Effects of detritivorous invertebrates on the decomposition of rice straw: evidence from a microcosm experiment

Abstract

Decomposition of crop residues is a key process in agricultural systems that influences nutrient cycling and productivity. To clarify the roles of different groups of invertebrates in decomposition in paddy fields, we conducted a microcosm experiment, testing the effects of soil eluate filtered through a 21 μm mesh (control treatment) against the effects of microfauna (< 0.1 mm) and small gastropods (juvenile golden apple snails (Pomacea canaliculata), ca. 2 mm shell diameter), both separately and in combination, on rice straw decomposition. Rice straw in litterbags was incubated at the soil surface and in the soil together with standardized amounts of the respective detritivores for 10 and 21 days. Compared to the control treatment, snails and microfauna enhanced the reduction in straw mass on the soil surface by 19 and 22%, respectively. Both groups combined increased the reduction in straw biomass by 30%. Below the soil surface, the contribution of detritivores to decomposition was smaller, reducing straw biomass by just 1% (snails), 11% (microfauna) and 14% (snails + microfauna) compared to the control. The effects of microfauna and snails on decomposition were not fully additive, a pattern that could be due to competition or trophic interactions. Model selection using Akaike’s information criterion on nested linear mixed effects models led to a model including the main effects (snails, microfauna, position and time), several two-way interactions and the three-way interaction snails * microfauna * litterbag_position as the most parsimonious description of the data. Keeping straw accessible to aquatic invertebrate detritivores should be a suitable management strategy to enhance decomposition in paddy fields, although trade-offs with other management issues such as pest control need to be considered.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Astor T, Lenoir L, Berg MP (2015) Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size. Oecologia 178:833–845

    Article  PubMed  Google Scholar 

  2. Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  PubMed  CAS  Google Scholar 

  3. Bartoń K (2015) Multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn. Accessed 9 April 2017

  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  5. Beare MH, Reddy MV, Tian G, Srivastava SC (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota. Appl Soil Ecol 6:87–108

    Article  Google Scholar 

  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach. Springer, New York

    Google Scholar 

  7. Cazzaniga NJ (1990) Predation of Pomacea canaliculata (Ampullaridae) on adult Biomphalaria peregrina (Planorbidae). Ann Trop Med Parasitol 84:97–100

    Article  PubMed  CAS  Google Scholar 

  8. de Vries FT, Thebault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjornlund L, Jorgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setala H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110:14296–14301

    Article  PubMed  Google Scholar 

  9. Dobermann A, Fairhurst TH (2002) Rice straw management. Better Crops Int 16:7–11

    Google Scholar 

  10. Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agr Ecosyst Environ 24:195–217

    Article  Google Scholar 

  11. Fujino C, Wada S, Konoike T, Toyota K, Suga Y, Ikeda J (2008) Effect of different organic amendments on the resistance and resilience of the organic matter decomposing ability of soil and the role of aggregated soil structure. Soil Sci Plant Nutr 54:534–542

    Article  CAS  Google Scholar 

  12. García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gelman A, Su Y-S (2016) Arm: data analysis using regression and multilevel/hierarchical models. R package version 1.9-3. https://CRAN.R-project.org/package=arm. Accessed 9 April 2017

  14. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  15. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Haettenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  16. Gregorich EG, Janzen H, Ellert BH, Helgason BL, Qian BD, Zebarth BJ, Angers DA, Beyaert RP, Drury CF, Duguid SD, May WE, McConkey BG, Dyck MF (2017) Litter decay controlled by temperature, not soil properties, affecting future soil carbon. Glob Change Biol 23:1725–1734

    Article  Google Scholar 

  17. Hattenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  18. Horgan FG (2017) Ecology and management of apple snails in rice. In: Chauhan B, Jabran K, Mahajan G (eds) Rice production worldwide. Springer, New York, pp 393–417

    Google Scholar 

  19. Horgan FG, Stuart AM, Kudavidanage EP (2014) Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecol Int J Ecol 54:90–100

    Article  Google Scholar 

  20. Huang L-M, Thompson A, Zhang G-L, Chen L-M, Han G-Z, Gong Z-T (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237:199–210

    Article  CAS  Google Scholar 

  21. Hunting ER, Vonk JA, Musters CJM, Kraak MHS, Vijver MG (2016) Effects of agricultural practices on organic matter degradation in ditches. Sci Rep 6:21474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jenkins BM, Bakker RR, Wei JB (1996) On the properties of washed straw. Biomass Bioenergy 10:177–200

    Article  CAS  Google Scholar 

  23. Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev Camb Philos Soc 84:375–389

    Article  PubMed  Google Scholar 

  24. Kataki S, Hazarika S, Baruah DC (2017) Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste Manag 59:102–117

    Article  PubMed  CAS  Google Scholar 

  25. Katayama N, Baba YG, Kusumoto Y, Tanaka K (2015) A review of post-war changes in rice farming and biodiversity in Japan. Agric Syst 132:73–84

    Article  Google Scholar 

  26. Kaur D, Bhardwaj NK, Lohchab RK (2017) Prospects of rice straw as a raw material for paper making. Waste Manag 60:127–139

    Article  PubMed  CAS  Google Scholar 

  27. Koegel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Koelbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  CAS  Google Scholar 

  28. Kuznetsova A, Brockhoff PB, Christensen RHB (2016) lmerTest: tests in linear mixed effects models. R package version 2.0-33. https://CRAN.R-project.org/package=lmerTest. Accessed 9 April 2017

  29. Kwong KL, Chan RKY, Qiu JW (2009) The potential of the invasive snail Pomacea canaliculata as a predator of various life stages of five species of freshwater snails. Malacologia 51:343–356

    Article  Google Scholar 

  30. Langan AM, Shaw EM (2006) Responses of the earthworm Lumbricus terrestris (L.) to iron phosphate and metaldehyde slug pellet formulations. Appl Soil Ecol 34:184–189

    Article  Google Scholar 

  31. Marxen A, Klotzbucher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A, Schadler M, Vetterlein D (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398:153–163

    Article  CAS  Google Scholar 

  32. Monkiedje A, Anderson AC, Englande AJ (1991) Acute toxicity of Phytolacca dodecandra (endod-S) and niclosamide to snails, Schistosoma mansoni cercaria, tilapia fish, and soil microorganisms. Environ Toxicol Water Qual 6:405–413

    Article  CAS  Google Scholar 

  33. Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–435

    Article  Google Scholar 

  34. Natuhara Y (2013) Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol Eng 56:97–106

    Article  Google Scholar 

  35. Okada H, Niwa S, Takemoto S, Komatsuzaki M, Hiroki M (2011) How different or similar are nematode communities between a paddy and an upland rice fields across a flooding-drainage cycle? Soil Biol Biochem 43:2142–2151

    CAS  Google Scholar 

  36. Oliveira EC, Paumgartten FJR (2000) Toxicity of Euphorbia milli latex and niclosamide to snails and nontarget aquatic species. Ecotoxicol Environ Saf 46:342–350

    Article  CAS  Google Scholar 

  37. Peltzer DA, Allen RB, Lovett GM, Whitehead D, Wardle DA (2010) Effects of biological invasions on forest carbon sequestration. Glob Change Biol 16:732–746

    Article  Google Scholar 

  38. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 9 April 2017

  39. Schaller J (2013) Invertebrate grazers are a crucial factor for grass litter mass loss and nutrient mobilization during aquatic decomposition. Fundam Appl Limnol 183:287–295

    Article  CAS  Google Scholar 

  40. Schaller J, Struyf E (2013) Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709:201–212

    Article  CAS  Google Scholar 

  41. Schmidt A, Auge H, Brandl R, Heong KL, Hotes S, Settele J, Villareal S, Schaedler M (2015a) Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic Appl Ecol 16:674–680

    Article  Google Scholar 

  42. Schmidt A, John K, Arida G, Auge H, Brandl R, Horgan FG, Hotes S, Marquez L, Radermacher N, Settele J, Wolters V, Schadler M (2015b) Effects of residue management on decomposition in irrigated rice fields are not related to changes in the decomposer community. PLoS ONE 10(7):e0134402. https://doi.org/10.1371/journal.pone.0134402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schmidt A, John K, Auge H, Brandl R, Horgan FG, Settele J, Zaitsev AS, Wolters V, Schadler M (2016) Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Appl Soil Ecol 107:79–90

    Article  Google Scholar 

  44. Schoenly KG, Justo HD, Barrion AT, Harris MK, Bottrell DG (1998) Analysis of invertebrate biodiversity in a Philippine farmer’s irrigated rice field. Environ Entomol 27:1125–1136

    Article  Google Scholar 

  45. Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih, Sartanto (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988

    Article  Google Scholar 

  46. Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics—a review of approaches with reference to rice-based cropping systems. Geoderma 137:1–18

    Article  CAS  Google Scholar 

  47. Standing D, Knox OGG, Mullins CE, Killham KK, Wilson MJ (2006) Influence of nematodes on resource utilization by bacteria—an in vitro study. Microb Ecol 52:444–450

    Article  PubMed  CAS  Google Scholar 

  48. Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Report for European Commission (DG Environment). Bio Intelligence Service, Institut de Recherche pour le Dévelloppement (IRD) and Netherlands Institute of Ecology (NIOO), Paris

  49. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  50. van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, Schadler M, Scherber C, Strauss SY, Vos M, Wardle DA (2009) Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wada T, Yoshida K (2000) Burrowing by the apple snail, Pomacea canaliculata (Lamarck); daily periodicity and factors affecting burrowing. Proc Assoc Plant Prot Kyushu 46:88–93

    Article  Google Scholar 

  52. Wall DH, Bradford MA, St MG, John JA, Trofymow V, Behan-Pelletier DDE, Bignell JM, Dangerfield WJ, Parton J, Rusek W, Voigt V, Wolters HZ, Gardel FO, Ayuke R, Bashford OI, Beljakova PJ, Bohlen A, Brauman S, Flemming JR, Henschel DL, Johnson TH, Jones M, Kovarova JM, Kranabetter L, Kutny K-C, Lin M, Maryati D, Masse A, Pokarzhevskii H, Rahman MG, Sabara J-A, Salamon MJ, Swift A, Varela HL, Vasconcelos D White, Zou X (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677

    Google Scholar 

Download references

Acknowledgements

We would like to thank the staff at the Crop and Environmental Science Department of the International Rice Research Institute for their hospitality during the microcosm experiment. We are grateful to Sylvia (Bong) Villareal, Liberty Almazan, Carmencita Bernal, Arriza Arida and Alberto Naredo for their support. This study was funded in part through the project ‘Land-use intensity and Ecological Engineering—Assessment Tools for risks and Opportunities in irrigated rice based production systems’ (LEGATO), German Federal Ministry for Education and Research (BMBF), Grant No. 01LL09 17L.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Hotes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panteleit, J., Horgan, F.G., Türke, M. et al. Effects of detritivorous invertebrates on the decomposition of rice straw: evidence from a microcosm experiment. Paddy Water Environ 16, 279–286 (2018). https://doi.org/10.1007/s10333-017-0625-8

Download citation

Keywords

  • Microfauna
  • Ecosystem function
  • Golden apple snail
  • Pomacea canaliculata
  • Oryza sativa