Amjath-Babu TS, Krupnik TJ, Aravindakshan S, Arshad M, Kaechele H (2016) Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: implications for policy. Ecol Indic 67:830–838
Article
Google Scholar
APSIM (2014) The APSIM-wheat module (7.5 R3008). http://www.apsim.info/Documentation/Model,CropandSoil/CropModuleDocumentation/Wheat.aspx. Accessed 6 May 2016
Aravindakshan S, Rossi FJ, Krupnik TJ (2015) What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis. Energy 90:483–493
Article
Google Scholar
Arshad M, Amjath-Babu TS, Kächele H, Müller K (2015) What drives the willingness to pay for crop insurance against extreme weather events (flood and drought) in Pakistan? A hypothetical market approach. Clim Dev 8(3):234–244. doi:10.1080/17565529.2015.1034232
Article
Google Scholar
Asseng S, Foster IAN, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17(2):997–1012
Article
Google Scholar
Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244
CAS
Article
PubMed
Google Scholar
Breusch TS, Pagan AR (1980) The Lagrange multiplier test and its applications to model specification in econometrics. Rev Econ Stud 47:239–253
Article
Google Scholar
Brown ME, Funk CC (2008) Food security under climate change. Science 319(5863):580–581
CAS
Article
PubMed
Google Scholar
Chang TT, Tagumpay O (1970) Genotypic association between grain yield and six agronomic traits in a cross between rice varieties of contrasting plant type. Euphytica 19(3):356–363
Article
Google Scholar
Chaudhry A (2000) Resource conservation technology and bed and furrow system for crop production: training manual for training at TII AME in Uzbekistan and OFWM in Pakistan. NZODA/ADAF project. p 40
Deschenes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural profits and random fluctuations in weather. Am Econ Rev 97(1):354–385
Article
Google Scholar
FAOSTAT (2016) Paddy rice and wheat yields in Pakistan. Food and Agriculture Organization of the United Nations Statistical Database. http://faostat.fao.org/. Accessed 8 May 2016
Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci 30:1–17
Article
Google Scholar
Gourdji SM, Sibley AM, Lobell D (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041
Article
Google Scholar
Guttormsen AG, Roll KH (2014) Production risk in a subsistence agriculture. J Agric Educ Ext 20(1):133–145
Article
Google Scholar
Hatfield JL, Boote KL, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370
Article
Google Scholar
Holst R, Yu X, Grün C (2013) Climate change, risk and grain yields in China. J Integr Agric 12(7):1279–1291
Article
Google Scholar
Isik M, Devadoss S (2006) An analysis of the impact of climate change on crop yields and yield variability. Appl Econ 38(7):835–844
Article
Google Scholar
Jain M, Naeem S, Orlove B, Modi V, deFreis RS (2015) Understanding the causes and consequences of differential decision-making in adaptation research: adapting to a delayed monsoon onset in Gujarat, India. Glob Environ Change 31:98–109
Article
Google Scholar
Just RE, Pope RD (1978) Stochastic specification of production functions and economic implications. J Econom 7(1):67–86
Article
Google Scholar
Kabubo-Mariara J, Karanja FK (2007) The economic impact of climate change on Kenyan crop agriculture: a Ricardian approach. Glob Planet Change 57:319–330
Article
Google Scholar
Keil A, D’souza A, McDonald A (2015) Zero-tillage as a pathway for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: does it work in farmers’ fields? Food Secur 7(5):983–1001
Article
Google Scholar
Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett 7(3):034032
Article
Google Scholar
Koundouri P, Nauges C (2005) On production function estimation with selectivity and risk. J Agric Resour Econ 30(3):597–608
Google Scholar
Krishna V, Aravindakshan S, Chowdhury A, Rudra B (2012) Farmer access and differential impacts of zero tillage technology in the subsistence wheat farming systems of West Bengal, India. CIMMYT-Socio-Economics Working Paper 5. CIMMYT, Mexico
Krishnan P, Ramakrishnan B, Raja Reddy K, Reddy VR (2011) High-temperature effects on rice growth, yield, and grain quality. Adv Agron 111:87–206
CAS
Article
Google Scholar
Krupnik TJ, Santos Valle S, Hossain I, Gathala MK, Justice S, Gathala MK, McDonald A (2013) Made in Bangladesh: scale-appropriate machinery for agricultural resource conservation in the context of smallholder farming. International Maize and Wheat Improvement Center, Mexico City
Google Scholar
Krupnik TJ, Ahmed ZU, Timsina J, Shahjahan M, Kurishi AA, Miah AA, Rahman BS, Gathala MK, McDonald AJ (2015a) Forgoing the fallow in Bangladesh’s stress-prone coastal deltaic environments: effect of sowing date, nitrogen, and genotype on wheat yield in farmers’ fields. Field Crops Res 170:7–20
Article
Google Scholar
Krupnik TJ, Ahmed ZU, Timsina J, Yasmin S, Hossain F, Al Mamun A, Mridha AI, McDonald AJ (2015b) Untangling crop management and environmental influences on wheat yield variability in Bangladesh: an application of non-parametric approaches. Agric Syst 139:166–179
Article
Google Scholar
Kunimitsu Y, Iizumi T, Yokozawa M (2014) Is long-term climate change beneficial or harmful for rice total factor productivity in Japan: evidence from a panel data analysis. Paddy Water Environ 12(2):213–225
Article
Google Scholar
Kunimitsu Y, Kudo R, Iizumi T, Yokozawa M (2015) Technological spillover in Japanese rice productivity under long-term climate change: evidence from the spatial econometric model. Paddy Water Environ. doi:10.1007/s10333-015-0485-z
Google Scholar
Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610
CAS
Article
PubMed
Google Scholar
Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change 2:186–189
Article
Google Scholar
Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84(4):753–771
Google Scholar
Mondal S, Singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, Sohu VS, Mavi GS, Sukuru VSP, Kalappanavar IK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Res 151:19–26
Article
Google Scholar
Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104(50):19680–19685
CAS
Article
PubMed
PubMed Central
Google Scholar
PAR (2016) Wheat crop in Pakistan. Pakistan Agricultural Research. http://edu.par.com.pk/wiki/wheat/. Accessed 23 May 2016
PARC, Pakistan Agricultural Research Council, Crop Sciences Research Institute (2015). http://www.parc.gov.pk/index.php/en/csi. Accessed 12 March 2015
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101(27):9971–9975
CAS
Article
PubMed
PubMed Central
Google Scholar
Poudel S, Kotani K (2013) Climatic impacts on crop yield and its variability in Nepal: do they vary across seasons and altitudes? Clim Change 116(2):327–355
Article
Google Scholar
Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:1–9
Article
Google Scholar
Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730
Article
Google Scholar
Reynolds MP, Quilligan E, Aggarwal PK, Bansal KC, Cavalieri AJ, Chapman SC, Chapotin SM, Datta SK, Duveiller E, Gill KS, Jagadish KSV, Joshi AK, Koehler A-K, Kosina P, Krishnan S, Lafitte R, Mahala RS, Muthurajan R, Paterson AH, Prasanna BM, Rakshit S, Rosegrant MW, Sharma I, Singh RP, Sivasankar S, Vadez V, Valluru R, Vara Prasad PV, Yadav OP (2016) An integrated approach to maintaining cereal productivity under climate change. Glob Food Secur 8:9–18
Article
Google Scholar
Rosenzweig C, Elliott J, Deryngd D, Ruane AC, Müllere C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273
CAS
Article
PubMed
Google Scholar
Sarker MAR, Alam K, Gow J (2012) Exploring the relationship between climate change and rice yield in Bangladesh: an analysis of time series data. Agric Syst 112:11–16
Article
Google Scholar
Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci USA 106:15594–15598
CAS
Article
PubMed
PubMed Central
Google Scholar
Seo SN, Mendelsohn R, Munasinghe M (2005) Climate change and agriculture in Sri Lanka: a Ricardian valuation. Environ Dev Econ 10:581–596
Article
Google Scholar
Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556
CAS
Article
Google Scholar
Siddiqui R, Samad G, Nasir M, Jalil HH (2012) The impact of climate change on major agricultural crops: evidence from Punjab, Pakistan. Pak Dev Rev 51(4):261
Google Scholar
Timsina J, Connor DJ (2001) Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crops Res 69:93–132
Article
Google Scholar
Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133
Article
Google Scholar
Yoshida S (1978) Tropical climate and its influence on rice. IRRI research paper series 20. International Rice Research Institute, Los Banos