Skip to main content
Log in

Effect of herbicides with different modes of action on physiological and cellular traits of Anabaena fertilissima

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

Cyanobacteria are important components of the lowland rice ecosystem. Therefore, it is important to examine the effect of herbicides (commonly used against weeds of rice crop) on the performance of cyanobacteria. We studied the toxic effects of three herbicides often used in rice field, viz. propanil, pretilachlor and glyphosate, on the performance traits of Anabaena fertilissima C.B. Rao. Pretilachlor [0–40 active ingredient (ai) mg/L] and glyphosate (0–80 ai mg/L) exhibited toxicity to A. fertilissima at higher doses than propanil (0–1.5 mg/L). Propanil had severe damaging effects on cellular characteristics of A. fertilissima when compared to pretilachlor or glyphosate. Propanil treatment of A. fertilissima resulted in the leakage of protoplast from the heterocyst due to the breakage of the plasma membrane and surrounding wall. Our study shows that photosystem II herbicides such as propanil could have deleterious effects on phototrophic (cyanobacterial) communities, which are an integral part of the rice ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen MM, Turnburke AC, Lagace EA, Steinback KE (1983) Effects of photosystem II herbicides on the photosynthetic membranes of the cyanobacterium Apanocapsa 6308. Plant Physiol 71:388–392

    Article  CAS  PubMed  Google Scholar 

  • Anand N, Hopper RSSK (1987) Blue green algae from rice fields in Kerala State, India. Hydrobiologia 144:223–232

    Article  Google Scholar 

  • Anderson W (1996) Weed Science: Principles and Applications. West Publishing Company, New York

    Google Scholar 

  • Chunleuchanon S, Sooksawang A, Teaumroong N, Boonkerd N (2003) Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: population dynamics as affected by environmental factors. World J Microbiol Biotechnol 19:167–173

    Article  CAS  Google Scholar 

  • Deloranzo ME, Leatherbury M, Weiner JA, Lewitus AJ, Fulton MH (2004) Physiological factors contributing to the species-specific sensitivity of four estuarine microalgal species exposed to the herbicide atrazine. Aquatic Ecosys Health Manage 7:137–146

    Article  Google Scholar 

  • Desikachary TV (1953) Cyanophyta. Indian Council of Agricultural Research, New Delhi, 398 p

  • Eleftherohorinos IG, Dhima K (2002) Red rice (Oryza sativa) control in rice (O. sativa) with preemergence and postemergence herbicides. Weed Technol 16:537–540

    Article  CAS  Google Scholar 

  • Fedtke C, Duke SO (2004) In Hock B, Elstner EF (eds) Plant toxicology. Marcel Dekker, New York, pp 247–330

  • Forlani G, Campani A (2002) A dimeric 5-enol-pyruvyl-shikimate-3-phosphate synthase from the cynobacterium Spirulina platensis. New Phytol 151:443–450

    Article  Google Scholar 

  • Goloubinoff P, Brusslan J, Golden SS, Haselkorn R, Edelman M (1988) Characterization of the photosystem II 32 kDa protein in Synechococcus PCC7942. Plant Mol Biol 11:441–447

    Article  CAS  Google Scholar 

  • Grover IS, Pandhol RK (1975) Algal flora of paddy fields in Ludhiana and its adjacent areas. Phykos 14:89–97

    Google Scholar 

  • Hess DF (2000) Light-dependent herbicides: an overview. Weed Sci 48:160–170

    Article  CAS  Google Scholar 

  • Hoagland RE, Norsworthy JK, Talbert RE (1999) Chemical interactions with the herbicide propanil on propanil-resistance barnyardgrass. Pestic Sci 55:571–573

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1997) Effects of cyanobacterial inoculum on soil characteristics and cereal growth. Can J Bot 75:1267–1272

  • Irisarri P, Gonnet S, Monza J (2001) Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol 91:95–103

    Article  CAS  PubMed  Google Scholar 

  • Koenig F (2001) In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer, Berlin, pp 389–406

  • Komenda J, Masojidek J (1998) The effect of photosystem II inhibitors DCMU and BNT on the high-light induced turnover in two cyanobacterial strains Synechocystis PCC 6803 and Synechococcus PCC 7942. Photosyn Res 57:193–202

    Article  CAS  Google Scholar 

  • Kotrikla A, Gatidou G, Lekkas T (1999) Toxic effects of atrazine, deethyl-atrazine, deisoproppyl-atrazine and metolachlor on Chlorella fusca var fusca. Global Nest 1:39–45

    Google Scholar 

  • Lang N, Fay P (1971) The heterocysts of blue-green algae. II. Details of ultra structure. Proc Royal Soc London B 178:193–203

    Article  Google Scholar 

  • Ma J, Wang S, Wang P, Ma L, Chen X, Xu R (2006) Toxicity assessment of 40 herbicides to the green alga, Raphidocelis subcapitata. Ecotoxicol Environ Safety 63:456–462

    Article  CAS  PubMed  Google Scholar 

  • Noack U, Geffke T, Balasubramanian R, Papenbrock J, Braune M, Scheerbaum D (2003) Effects of the herbicide metazachlor on phytoplankton and periphyton communities in outdoor mesocosms. Acta Hydrochim Hydrobiol 31:482–490

    Article  Google Scholar 

  • OECD (2002) Guidelines for the testing of chemicals, https://www.oecd.org/dataoecd/58/60/1946914.pdf

  • Pandey KD, Kashyap AK (1986) Differential sensitivity of three cyanobacteria to the rice field herbicide Machete. J Basic Microbiol 26:421–428

    Article  CAS  Google Scholar 

  • Pereira I, Moya M, Reyes G, Kramm VA (2005) Survey of heterocystous nitrogen-fixing cyanobacteria in Chilean rice fields. Gayana Bot 62:26–3

    Google Scholar 

  • Powell HA, Kerby NW, Rowell P, Mousdale DM, Coggins JR (1992) Purification and properties of a glyphosate-tolerant 5-enolpyruvylshikimate 3-phosphate synthase from the cyanobacterium Anabaena variabilis. Planta 188:484–490

    Article  CAS  Google Scholar 

  • Roger PA (1991) In: Dutta SK, Sloger C (eds) Biological N2 fixation associated with rice cultivation. Oxford and IBH Publishing, New Delhi, India, pp 119–141

  • Roger PA, Santiago-Ardales S, Reddy PM, Watanabe I (1987) The abundance of heterocystous blue-green algae in rice fields. Biol Fert Soils 5:98–105

    Article  Google Scholar 

  • Schrader KK, De Regt MQ, Tucker CS, Duke SO (1997a) A rapid bioassay for selective algicides. Weed Technol 11:767–774

    CAS  Google Scholar 

  • Schrader KK, Rimando AM, Tucker CS, Duke SO (1997b) Factors affecting toxicity of ferulate towards the cyanobacterium Oscillatoria cf chalybea. Pest Sci 55:726–732

    Google Scholar 

  • Shibayama H (2001) Weeds and weed management in rice in Japan. Weed Biol Manage 1:53–60

    Article  CAS  Google Scholar 

  • SPSS Inc (1999) SPSS Base 10.0 for Windows user’s guide, SPSS Inc., Chicago

  • Sunda W, Price NM, Morel FMM (2005) In: Anderson R (ed) Algal culturing techniques. Academic Press, Burlington, pp 435–436

  • Tiwari ON, Prasanna R, Yadav RK, Dhar DW, Singh PK (2001) Growth potential and biocide tolerance of non-heterocystous filamentous cyanobacterial isolates from rice fields of Uttar Pradesh, India. Biol Fert Soils 34:291–295

    Article  CAS  Google Scholar 

  • Vaishampayan A (1984) Biological effects of a herbicide on a nitrogen-fixing cyanobacterium (Blue Green Alga): An attempt for introducing herbicide resistance. New Phytol 96:7–11

    Article  CAS  Google Scholar 

  • Valverde BE, Itoh K (2001) In Powles SB, Shaner DL (eds) Herbicide resistance and world grains, CRC Press LLC, Boca Raton, pp 195–219

  • Vasilakoglou I, Dhima K (2005) Red rice (Oryza sativa L.) and barnyardgrass (Echinochloa spp.) biotype susceptibility to postemergence-applied imazamox. Weed Biol Manage 5:46–52

    Article  CAS  Google Scholar 

  • Venkataraman LV (1983) A monograph on Spirulina platensis. Biotechnology and application. Central Food Technology Research Institute, Mysore

    Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research (CSIR) for grant (grant # 38 [1094]/03/EMR-II). We thank Professor P. K. Singh, Project Director, Centre for Conservation and Utilization of Blue-Green Algae, IARI, New Delhi for providing the Anabaena strain. Both authors contributed equally to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inderjit, Kaushik, S. Effect of herbicides with different modes of action on physiological and cellular traits of Anabaena fertilissima . Paddy Water Environ 8, 277–282 (2010). https://doi.org/10.1007/s10333-010-0208-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-010-0208-4

Keywords

Navigation