Skip to main content
Log in

Research progress on the relationship between BRCA1 and hereditary breast cancer

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

Breast cancer gene 1 (BRCA1) gene was the first breast cancel susceptibility gene discovered in familial breast cancer. It has been revealed that BRCA1 can be combined with an array of important protein involved in cell cycle regulation, DNA repair, gene transcription control and apoptosis regulation. It plays a down-regulation effect on tumor growth and an important role in maintaining genomic stability. New research suggests that it also associate with the breast cancer stem cells and microRNA. Its mutations, promoter methylation and ectopic expression may one of the main reasons for the generation and development of hereditary breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 1990, 250: 1864–1689.

    Article  Google Scholar 

  2. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet, 1998, 62: 676–689.

    Article  CAS  Google Scholar 

  3. Zheng Y, Zhen LL, Fan P. Mutation analysis in the BRCA1 gene in Chinese breast cancer families. Chinese-German J Clin Oncol, 2003, 2: 153–155.

    Article  Google Scholar 

  4. Iniesta MD, Chien J, Wicha M, et al. One-hit effects and cancer. Cancer Prev Res (Phila), 2010, 3: 12–15.

    Article  CAS  Google Scholar 

  5. Ongusaha PP, Ouchi T, Kim KT, et al. BRCA1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene, 2003, 22: 3749–3758.

    Article  CAS  PubMed  Google Scholar 

  6. Chandler J, Hohenstein P, Swing DA, et al. Human BRCA1 gene rescues the embryonic lethality of Brca1 mutant mice. Genesis, 2001, 29: 72–77.

    Article  CAS  PubMed  Google Scholar 

  7. Vollebergh MA, Jonkers J, Linn SC. Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers. Cell Mol Life Sci, 2012, 69: 223–245.

    Article  CAS  PubMed  Google Scholar 

  8. Smith J, Tho LM, Xu N, et al. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res, 2010, 108: 73–112.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Szabo C, Qian C, et al. Mutational analysis of thirty-two dou-ble-strand DNA break repair genes in breast and pancreatic cancers. Cancer Res, 2008, 68: 971–975.

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Holstege H, van der Gulden H, et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A, 2007, 104: 12111–12116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Carraro DM, Koike Folgueira MA, Garcia Lisboa BC, et al. Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: a portrait of early-onset breast cancer in Brazil. PLoS One, 2013, 8: e57581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lee DS, Yoon SY, Looi LM, et al. Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res, 2012, 14: R66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int, 2013: 747318.

  14. Tommiska J, Bartkova J, Heinonen M, et al. The DNA damage signalling kinase ATM is aberrantly reduced or lost in BRCA1/BRCA2-deficient and ER/PR/ERBB2-triple-negative breast cancer. Oncogene, 2008, 27: 2501–2506.

    Article  CAS  PubMed  Google Scholar 

  15. McPherson JP, Lemmers B, Hirao A, et al. Collaboration of Brca1 and Chk2 in tumorigenesis. Genes Dev, 2004, 18: 1144–1153.

    Article  CAS  PubMed  Google Scholar 

  16. Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer, 2012, 106: 248–253.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, et al. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res, 2006, 8: R38.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hsu NC, Huang YF, Yokoyama KK, et al. Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer. PLoS One, 2013, 8: e56256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang Q, Zhang Q, Cong H, et al. The ectopic expression of BRCA1 is associated with genesis, progression, and prognosis of breast cancer in young patients. Diagn Pathol, 2012, 7: 181.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Armes JE, Egan AJ, Southey MC, et al. The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations: a population-based study. Cancer, 1998, 83: 2335–2345.

    Article  CAS  PubMed  Google Scholar 

  21. Mangia A, Malfettone A, Simone G, et al. Old and new concepts in histopathological characterization of familial breast cancer. Ann Oncol, 2011, 22: i24–30.

    Article  PubMed  Google Scholar 

  22. Lakhani SR, Jacquemier J, Sloane JP, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst, 1998, 90: 1138–1145.

    Article  CAS  PubMed  Google Scholar 

  23. Gorski JJ, Kennedy RD, Hosey AM, et al. The complex relationship between BRCA1 and ERalpha in hereditary breast cancer. Clin Cancer Res, 2009, 15: 1514–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Armes JE, Trute L, White D, et al. Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers: a population-based study. Cancer Res, 1999, 59: 2011–2017.

    CAS  PubMed  Google Scholar 

  25. van der Groep P, van der Wall E, van Diest PJ. Pathology of hereditary breast cancer. Cell Oncol (Dordr), 2011, 34: 71–88.

    Article  Google Scholar 

  26. Rosen EM. BRCA1 in the DNA damage response and at telomeres. Front Genet, 2013, 4: 85.

    PubMed Central  PubMed  Google Scholar 

  27. Srivastava N, Gochhait S, de Boer P, et al. Role of H2AX in DNA damage response and human cancers. Mutat Res, 2009, 681: 180–188.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Q, Pao GM, Huynh AM, et al. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature, 2011, 477: 179–184.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. AB, Brown M, Haffty B, et al. p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res, 2011, 71: 5546–5557

    Article  Google Scholar 

  30. Yun MH, Hiom K. Understanding the functions of BRCA1 in the DNAdamage response. Biochem Soc Trans, 2009, 37: 597–604.

    Article  CAS  PubMed  Google Scholar 

  31. Yang J, Xu XM, Hao YR. DNA repair genes BRCA1 and DNA-PKcs have great potential in radiation therapy. Chinese-German J Clin Oncol, 2012, 11: 683–688.

    Article  CAS  Google Scholar 

  32. Wang H, Shao N, Ding QM, et al. BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases. Oncogene, 1997, 15: 143–157.

    Article  CAS  PubMed  Google Scholar 

  33. Stolz A, Ertych N, Bastians H. Loss of the tumour-suppressor genes CHK2 and BRCA1 results in chromosomal instability. Biochem Soc Trans, 2010, 38: 1704–1708.

    Article  CAS  PubMed  Google Scholar 

  34. Shao N, Chai YL, Shyam E, et al. Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene, 1996, 13: 1–7.

    CAS  PubMed  Google Scholar 

  35. Zhang H, Somasundaram K, Peng Y, et al. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene, 1998, 16: 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Yu J, Zhan Q. BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun, 2008, 370: 201–206.

    Article  CAS  PubMed  Google Scholar 

  37. Yeung BH, Kwan BW, He QY, et al. Glucose-regulated protein 78 as a novel effector of BRCA1 for inhibiting stress-induced apoptosis. Oncogene, 2008, 27: 6782–6789.

    Article  CAS  PubMed  Google Scholar 

  38. Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem, 2000, 275: 33487–33496.

    Article  CAS  PubMed  Google Scholar 

  39. Yan Y, Haas JP, Kim M, et al. BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem, 2002, 277: 33422–33430.

    Article  CAS  PubMed  Google Scholar 

  40. Iqbal J, Chong PY, Tan PH. Breast cancer stem cells: an update. J Clin Pathol, 2013, 66: 485–490.

    Article  CAS  PubMed  Google Scholar 

  41. Gangopadhyay S, Nandy A, Hor P, et al. Breast cancer stem cells: a novel therapeutic target. Clin Breast Cancer, 2013, 13: 7–15

    Article  CAS  PubMed  Google Scholar 

  42. Liu S, Ginestier C, Charafe-Jauffret E, et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A, 2008, 105: 1680–1685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Melchor L, Benítez J. An integrative hypothesis about the origin and development of sporadic and familial breast cancer subtypes. Carcinogenesis, 2008, 29: 1475–1482.

    Article  CAS  PubMed  Google Scholar 

  44. Wright MH, Calcagno AM, Salcido CD, et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res, 2008, 10: R10.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Singh R, Mo YY. Role of microRNAs in breast cancer. Cancer Biol Ther, 2013, 14: 201–212.

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Xiao B, Tong H, et al. Regulation of breast cancer tumorigenesis and metastasis by miRNAs. Expert Rev Proteomics, 2012, 9: 615–625.

    Article  CAS  PubMed  Google Scholar 

  47. Xiao LB, Wu ZP, Feng R, et al. MicroRNAs and cancer. Chinese-German J Clin Oncol, 2010, 9: 547–554.

    Article  CAS  Google Scholar 

  48. Chang S, Wang RH, Akagi K, et al. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med, 2011, 17: 1275–1282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol, 2012, 197: 201–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Wu, C. & Yang, S. Research progress on the relationship between BRCA1 and hereditary breast cancer. Chin. -Ger. J. Clin. Oncol. 12, 602–606 (2013). https://doi.org/10.1007/s10330-013-1247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-013-1247-2

Key words

Navigation