Skip to main content
Log in

Clinical utility of proton magnetic resonance spectroscopy in the diagnosis of breast tumors

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

Proton magnetic resonance spectroscopy (1H MRS) can provide specific biochemical information within breast lesions and the elevated composite choline concentration as a useful diagnostic tool has been used to distinguish malignant from benign breast lesions, early evaluate response to therapy and predict prognosis. However, several obstacles including poor spatial resolution, low signal-to-noise ratio (SNR), long acquisition time and the difficulty of “extra” lipid suppression may have a negative impact on the routine application of in vivo 1H MRS for human breast cancer. At present, optimization H MRS methodology for breast studies has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000. CA Cancer J Clin, 2000, 50: 7–33.

    Article  PubMed  CAS  Google Scholar 

  2. National Cancer Institute. Surveillance, epidemiology, and end results. Incidence: Breast Cancer. [Last accessed: 07/05/02.] Available at: http://seer.cancer.gov/faststats/html/inc_breast.html.

  3. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology, 2001, 220: 13–30.

    PubMed  CAS  Google Scholar 

  4. Kneeshaw PJ, Turnbull LW, Drew PJ. Current applications and future direction of MR mammography. Br J Cancer, 2003, 88: 4–10.

    Article  PubMed  CAS  Google Scholar 

  5. Rieber A, Schramm K, Helms G, et al. Breast-conserving surgery and autogenous tissue reconstruction in patients with breast cancer: efficacy of MRI of the breast in the detection of recurrent disease. Eur Radiol, 2003, 13: 780–787.

    PubMed  Google Scholar 

  6. Partridge SC, Gibbs JE, Lu Y, et al. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR Am J Roentgenol, 2002, 179: 1193–1199.

    PubMed  Google Scholar 

  7. Liberman L, Morris EA, Dershaw DD, et al. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol, 2003, 180: 901–910.

    PubMed  Google Scholar 

  8. Esserman L, Hylton N, Yassa L, et al. Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol, 1999, 17: 110–119.

    PubMed  CAS  Google Scholar 

  9. Warner E, Plewes DB, Shumak RS, et al. Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer. J Clin Oncol, 2001, 19: 3524–3531.

    PubMed  CAS  Google Scholar 

  10. Tse GM, Yeung DK, King AD, et al. In vivo proton magnetic resonance spectroscopy of breast lesions: an update. Breast Cancer Res Treat, 2007, 104: 249–255.

    Article  PubMed  Google Scholar 

  11. Stanwell P, Gluch L, Clark D, et al. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol, 2005, 15: 1037–1043.

    Article  PubMed  Google Scholar 

  12. Bartella L, Morris EA, Dershaw DD, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology, 2006, 239: 686–692.

    Article  PubMed  Google Scholar 

  13. Cecil KM, Schnall MD, Siegelman ES, et al. The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat, 2001, 68: 45–54.

    Article  PubMed  CAS  Google Scholar 

  14. Kvistad KA, Bakken IJ, Gribbestad IS, et al. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging, 1999, 10, 159–164.

    Article  PubMed  CAS  Google Scholar 

  15. Roebuck JR, Cecil KM, Schnall MD, et al. Human breast lesions: characterization with proton MR spectroscopy. Radiology, 1998, 209:269–275.

    PubMed  CAS  Google Scholar 

  16. Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy — initial results. Radiology, 2001, 220: 40–46.

    PubMed  CAS  Google Scholar 

  17. Bakken IJ, Axelson D, Kvistad KA, et al. Classification of in vivo 1H MR spectra from breast tissue using artificial neural networks. Anticancer Res, 2001, 21: 1481–1485.

    PubMed  CAS  Google Scholar 

  18. Jagannathan NR, Kumar M, Seenu V, et al. Evaluation of total choline from in vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer, 2001, 84: 1016–1022.

    Article  PubMed  CAS  Google Scholar 

  19. Gribbestad IS, Singstad TE, Nilsen G, et al. In vivo 1H MRS of normal breast and breast tumors using a dedicated double breast coil. J Magn Reson Imaging, 1998, 8: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  20. Sijens PE, Wijrdeman HK, Moerland MA, et al. Human breast cancer in vivo: H-1 and P-31 MR spectroscopy at 1.5 T. Radiology, 1988, 169: 615–620.

    PubMed  CAS  Google Scholar 

  21. Jagannathan NR, Singh M, Govindaraju V, et al. Volume localized in vivo proton MR spectroscopy of breast carcinoma: variation of waterfat ratio in patients receiving chemotherapy. NMR Biomed, 1998, 11:414–422.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas MA, Binesh N, Yue K, et al. Volume-localized two-dimensional correlated magnetic resonance spectroscopy of human breast cancer. J Magn Reson Imaging, 2001, 14: 181–186.

    Article  PubMed  CAS  Google Scholar 

  23. Gluch L. Magnetic resonance in surgical oncology: II-literature review. ANZ J Surg, 2005, 75: 464–470.

    Article  PubMed  Google Scholar 

  24. Meisamy S, Bolan PJ, Baker EH, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology, 2005, 236: 465–475.

    Article  PubMed  Google Scholar 

  25. Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res, 2004, 64: 4270–4276.

    Article  PubMed  CAS  Google Scholar 

  26. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res, 1999, 59: 80–84.

    PubMed  CAS  Google Scholar 

  27. Glunde K, Jie C, Bhujwalla ZM. Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia, 2006, 8: 758–771.

    Article  PubMed  CAS  Google Scholar 

  28. Hu J, Vartanian SA, Xuan Y, et al. An improved 1H magnetic resonance spectroscopic imaging technique for the human breast: preliminary results. Magn Reson Imaging, 2005, 23: 571–576.

    Article  PubMed  Google Scholar 

  29. Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Natl Cancer Inst, 2002, 94: 1197–1203.

    PubMed  CAS  Google Scholar 

  30. Rohlfs EM, Garner SC, Mar MH, et al. Glycerophosphocholine and phosphocholine are the major choline metabolites in rat milk. J Nutr, 1993, 123: 1762–1768.

    PubMed  CAS  Google Scholar 

  31. Jacobs MA, Barker PB, Argani P, et al. Combined dynamic contrast enhanced breast MR and proton spectroscopic imaging: a feasibility study. J Magn Reson Imaging, 2005, 21: 23–28.

    Article  PubMed  Google Scholar 

  32. Huang W, Fisher PR, Dulaimy K, et al. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology, 2004, 232: 585–591.

    Article  PubMed  Google Scholar 

  33. Senofsky GM, Moffat FL Jr, Davis K, et al. Total axillary lymphadenectomy in the management of breast cancer. Arch Surg, 1991, 126:1336–1341.

    PubMed  CAS  Google Scholar 

  34. Mussurakis S, Buckley DL, Horsman A. Prediction of axillary lymph node status in invasive breast cancer with dynamic contrast-enhanced MR imaging. Radiology, 1997, 203: 317–321.

    PubMed  CAS  Google Scholar 

  35. Seenu V, Pavan Kumar MN, Sharma U, et al. Potential of magnetic resonance spectroscopy to detect metastasis in axillary lymph nodes in breast cancer. Magn Reson Imaging, 2005, 23: 1005–1010.

    Article  PubMed  Google Scholar 

  36. Yeung DK, Yang WT, Tse GM. Breast cancer: in vivo proton MR spectroscopy in the characterization of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology, 2002, 225: 190–197.

    Article  PubMed  Google Scholar 

  37. Junkermann H, von Fournier D. Imaging methods for evaluating the response of breast carcinoma to preoperative chemotherapy. Radiologe (German), 1997, 37: 726–732.

    Article  CAS  Google Scholar 

  38. Segel MC, Paulus DD, Hortobagyi GN. Advanced primary breast cancer: assessment at mammography of response to induction chemotherapy. Radiology, 1988, 169: 49–54.

    PubMed  CAS  Google Scholar 

  39. Vinnicombe SJ, MacVicar AD, Guy RL, et al. Primary breast cancer: mammographic changes after neoadjuvant chemotherapy, with pathologic correlation. Radiology, 1996, 198: 333–340.

    PubMed  CAS  Google Scholar 

  40. Herrada J, Iyer RB, Atkinson EN, et al. Relative value of physical examination, mammography, and breast sonography in evaluating the size of the primary tumor and regional lymph node metastases in women receiving neoadjuvant chemotherapy for locally advanced breast carcinoma. Clin Cancer Res, 1997, 3: 1565–1569.

    PubMed  CAS  Google Scholar 

  41. Esserman L, Kaplan E, Partridge S, et al. MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol, 2001, 8:549–559.

    Article  PubMed  CAS  Google Scholar 

  42. Gilles R, Guinebretière JM, Toussaint C, et al. Locally advanced breast cancer: contrast-enhanced subtraction MR imaging of response to preoperative chemotherapy. Radiology, 1994, 191: 633–638.

    PubMed  CAS  Google Scholar 

  43. Abraham DC, Jones RC, Jones SE, et al. Evaluation of neoadjuvant chemotherapeutic response of locally advanced breast cancer by magnetic resonance imaging. Cancer, 1996, 78: 91–100.

    Article  PubMed  CAS  Google Scholar 

  44. Balu-Maestro C, Chapellier C, Bleuse A, et al. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. Breast Cancer Res Treat, 2002, 72: 145–152.

    Article  PubMed  CAS  Google Scholar 

  45. Rieber A, Brambs HJ, Gabelmann A, et al. Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol, 2002, 12: 1711–1719.

    Article  PubMed  CAS  Google Scholar 

  46. Delille JP, Slanetz PJ, Yeh ED, et al. Invasive ductal breast carcinoma response to neoadjuvant chemotherapy: noninvasive monitoring with functional MR imaging pilot study. Radiology, 2003, 228: 63–69.

    Article  PubMed  Google Scholar 

  47. Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy — a pilot study at 4 T. Radiology, 2004, 233:424–431.

    Article  PubMed  Google Scholar 

  48. Kumar M, Jagannathan NR, Seenu V, et al. Monitoring the therapeutic response of locally advanced breast cancer patients: sequential in vivo proton MR spectroscopy study. J Magn Reson Imaging, 2006, 24: 325–332.

    Article  PubMed  Google Scholar 

  49. AI-Saffar NM, Troy H, Ramírez de Molina A, et al. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res, 2006, 66: 427–434.

    Article  Google Scholar 

  50. Fütterer JJ, Scheenen TW, Huisman HJ, et al. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol, 2004, 39: 671–680.

    Article  PubMed  Google Scholar 

  51. Mountford CE, Somorjai RL, Malycha P, et al. Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fineneedle aspirates analysed using a statistical classification strategy. Br J Surg, 2001, 88: 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  52. Dreher W, Leibfritz D. Fast proton spectroscopic imaging with high signal-to-noise ratio: spectroscopic RARE. Magn Reson Med, 2002, 47: 523–528.

    Article  PubMed  CAS  Google Scholar 

  53. Bolan PJ, DelaBarre L, Baker EH, et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med, 2002, 48: 215–222.

    Article  PubMed  Google Scholar 

  54. Jacobs MA, Barker PB, Bottomley PA, et al. Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging, 2004, 19: 68–75.

    Article  PubMed  Google Scholar 

  55. Chen W, Hu J. Mapping brain metabolites using a double echo-filter metabolite imaging (DEFMI) technique. J Magn Reson, 1999, 140:363–370.

    Article  PubMed  CAS  Google Scholar 

  56. Hu J, Jiang Q, Xia Y, et al. High spatial resolution in vivo 2D (1)H magnetic resonance spectroscopic imaging of human muscles with a band-selective technique. Magn Reson Imaging, 2001, 19: 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  57. Kühn B, Dreher W, Norris DG, et al. Fast proton spectroscopic imaging employing k-space weighting achieved by variable repetition times. Magn Reson Med, 1996, 35: 457–464.

    PubMed  Google Scholar 

  58. Maudsley AA, Matson GB, Hugg JW, et al. Reduced phase encoding in spectroscopic imaging. Magn Reson Med, 1994, 31: 645–651.

    Article  PubMed  CAS  Google Scholar 

  59. Pohmann R, von Kienlin M, Hasse A. Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson, 1997, 129: 145–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Y., Wu, J. Clinical utility of proton magnetic resonance spectroscopy in the diagnosis of breast tumors. Chin. -Ger. J. Clin. Oncol. 7, 326–331 (2008). https://doi.org/10.1007/s10330-008-0035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-008-0035-x

Key words

Navigation