Skip to main content

Advertisement

Log in

Pancreatic cancer — Outlook: targeted therapy

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

Pancreatic cancer is a devastating disease characterized by almost identical incidence and mortality rates. Since this tumour is mostly diagnosed in an advanced stage there is usually no option for a curative surgical resection. In addition, pancreatic cancers known to be resistant to conventional treatment modalities such as chemotherapy and radiotherapy. Therefore, novel strategies for targeting these tumors are urgently needed. The increasing knowledge on the underlying pathogenetic mechanisms has led to the identification of surface receptor molecules that initiate intracellular signalling cascades upon ligand binding, thus leading to tumor progression. Targeting these receptors or their secreted ligands is therefore an attractive new approach for cancer therapy. The epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) are transmembrane tyrosine kinase receptors which can be targeted by various compounds such as antibodies or small molecule inhibitors. In addition, various molecules targeting proteins secreted by pancreatic cancers such as matrix metalloproteinases (MMP’s) or intracellular oncogenic signalling components such as the farnesyl-transferase have been proposed as potential new approaches for targeted cancer therapy. The use of these agents alone or in combination with conventional therapeutic regimens is currently being evaluated and shows first promising results for pancreatic cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med, 1992, 326: 455–465.

    Article  CAS  PubMed  Google Scholar 

  2. Gress TM. Exocrine pancreas cancer-The European Pancreatic Cancer-Research Cooperative (EPC-RC). In: Felsenstein, Hannover, 2005, 42–59.

    Google Scholar 

  3. Yeo CJ, Cameron JL. Improving results of pancreaticoduodencectomy for pancreatic cancer. World J Surg, 1999, 23: 907–912.

    Article  CAS  PubMed  Google Scholar 

  4. Parker SL, Tong T, Bolden S, et al. Cancer statistics. CA Cancer J Clin, 1996, 46: 5–27.

    Article  CAS  PubMed  Google Scholar 

  5. Vimalachandran D, Ghaneh P, Costello E, et al. Genetics and prevention of pancreatic cancer. Cancer Control, 2004, 11: 6–14.

    PubMed  Google Scholar 

  6. Casey G, Yamanaka Y, Friess H, et al. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Lett, 1993, 69: 151–160.

    Article  CAS  PubMed  Google Scholar 

  7. Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res, 1997, 57: 1731–1734.

    CAS  PubMed  Google Scholar 

  8. Wilentz RE, Lacobuzio-Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res, 2000, 60, 2002–2006.

    CAS  PubMed  Google Scholar 

  9. Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol, 1993, 143: 545–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 1984, 309: 418–425.

    Article  CAS  PubMed  Google Scholar 

  11. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  12. Wiedmann MW, Caca K. Molecularly targeted therapy for gastrointestinal cancer. Curr Cancer Drug Targets, 2005, 5: 171–193.

    Article  CAS  PubMed  Google Scholar 

  13. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19: 6550–6565.

    Article  CAS  PubMed  Google Scholar 

  14. Riely GJ, Pao W. Combining EGFR targeted therapy with chemotherapy in pancreatic cancer: is timing important? Cancer Biol Ther, 2005, 4: 1096–1097.

    Article  CAS  PubMed  Google Scholar 

  15. Xiong HQ, Abbruzzese JL. Epidermal growth factor receptor-targeted therapy for pancreatic cancer. Semin Oncol, 2002, 29: 31–37.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong HQ, Rosenberg A, LoBuglio A, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. J Clin Oncol, 2004, 22: 2610–2616.

    Article  CAS  PubMed  Google Scholar 

  17. Krempien R, Muenter MW, Huber PE, et al. Randomized phase II-study evaluating EGFR targeting therapy with cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer-PARC: study protocol [ISRC TN56652283]. BMC Cancer, 2005, 5: 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Graeven U, Kremer B, Sudhoff T, et al. Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. Br J Cancer, 2006, 94: 1293–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang PA, Tsao MS, Moore MJ. A review of erlotinib and its clinical use. Expert Opin Pharmacother, 2006, 7: 177–193.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Kleeff J, Giese N, et al. Gefitinib (’Iressa’, ZD1839), a selective epidermal growth factor receptor tyrosine kinase inhibitor, inhibits pancreatic cancer cell growth, invasion, and colony formation. Int J Oncol, 2004, 25: 203–210.

    CAS  PubMed  Google Scholar 

  21. Czito BG, Willett CG, Bendell JC, et al. Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. J Clin Oncol, 2006, 24: 656–662.

    Article  CAS  PubMed  Google Scholar 

  22. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol, 2001, 61: 253–270.

    Article  CAS  PubMed  Google Scholar 

  23. Ortega N, Jonca F, Vincent S, et al. Systemic activation of the vascular endothelial growth factor receptor KDR/flk-1 selectively triggers endothelial cells with an angiogenic phenotype. Am J Pathol, 1997, 151: 1215–1224.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J, 1999, 13: 9–22.

    CAS  PubMed  Google Scholar 

  25. Wang Y, Fei D, Vanderlaan M, et al. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis, 2004 7: 335–345.

    Article  CAS  PubMed  Google Scholar 

  26. Crane CH, Ellis LM, Abbruzzese JL, et al. Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol, 2006, 24: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  27. Kindler HL, Friberg G, Singh DA, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol, 2005, 23: 8033–8040.

    Article  CAS  PubMed  Google Scholar 

  28. Folkman J, Rogers MS. Thalidomide for multiple myeloma. N Engl J Med, 2006, 354: 2389–2390.

    Article  CAS  PubMed  Google Scholar 

  29. Villalona-Calero M, Schaaf L, Phillips G, et al. Thalidomide and celecoxib as potential modulators of irinotecan’s activity in cancer patients. Cancer Chemother Pharmacol, 2006.

  30. Cox MC, Dahut WL, Figg WD, et al. The use of thalidomide in androgen-independent prostate cancer. Urol Oncol, 2006, 24: 246–249.

    Article  CAS  PubMed  Google Scholar 

  31. Gordon JN, Trebble TM, Ellis RD, et al. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut, 2005, 54: 540–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004, 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  33. Siu LL, Awada A, Takimoto CH, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res, 2006, 12: 144–151.

    Article  CAS  PubMed  Google Scholar 

  34. Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol, 2001, 19: 3447–3455.

    CAS  PubMed  Google Scholar 

  35. Evans JD, Stark A, Johnson CD, et al. A phase II trial of marimastat in advanced pancreatic cancer. Br J Cancer, 2001, 85: 1865–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bramhall SR, Schulz J, Nemunaitis J, et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer, 2002, 87: 161–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Macdonald JS, McCoy S, Whitehead RP, et al. A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest New Drugs, 2005, 23: 485–487.

    Article  CAS  PubMed  Google Scholar 

  38. End DW, Smets G, Todd AV, et al. Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res, 2001, 61: 131–137.

    CAS  PubMed  Google Scholar 

  39. Martin NE, Brunner TB, Kiel KD, et al. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778, 123 and radiotherapy for locally advanced pancreatic cancer. Clin Cancer Res, 2004, 10: 5447–5454.

    Article  CAS  PubMed  Google Scholar 

  40. Van Cutsem E, van de Velde H, Karasek P et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol, 2004, 22: 1430–1438.

    Article  PubMed  Google Scholar 

  41. Saad ED, Hoff PM. Molecular-targeted agents in pancreatic cancer. Cancer Control, 2004, 11: 32–38.

    PubMed  Google Scholar 

  42. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. Proc Am Soc Clin Oncol, 2005, 23: 1s.

  43. Maples WJ, Stevenson J, Sumrall SV, et al. J Clin Oncol, 2004, 22: 4082.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Gress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michl, P., Gress, T.M. Pancreatic cancer — Outlook: targeted therapy. Chinese German J Clin Oncol 6, 176–180 (2007). https://doi.org/10.1007/s10330-007-0048-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-007-0048-x

Keywords

Navigation