Skip to main content
Log in

Deep learning for automatic facial detection and recognition in Japanese macaques: illuminating social networks

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Individual identification plays a pivotal role in ecology and ethology, notably as a tool for complex social structures understanding. However, traditional identification methods often involve invasive physical tags and can prove both disruptive for animals and time-intensive for researchers. In recent years, the integration of deep learning in research has offered new methodological perspectives through the automatisation of complex tasks. Harnessing object detection and recognition technologies is increasingly used by researchers to achieve identification on video footage. This study represents a preliminary exploration into the development of a non-invasive tool for face detection and individual identification of Japanese macaques (Macaca fuscata) through deep learning. The ultimate goal of this research is, using identification done on the dataset, to automatically generate a social network representation of the studied population. The current main results are promising: (i) the creation of a Japanese macaques’ face detector (Faster-RCNN model), reaching an accuracy of 82.2% and (ii) the creation of an individual recogniser for the Kōjima Island macaque population (YOLOv8n model), reaching an accuracy of 83%. We also created a Kōjima population social network by traditional methods, based on co-occurrences on videos. Thus, we provide a benchmark against which the automatically generated network will be assessed for reliability. These preliminary results are a testament to the potential of this approach to provide the scientific community with a tool for tracking individuals and social network studies in Japanese macaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(source: Google Maps). B ‘Main group’ macaques feeding on the beach. C Baited macaques on scales

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexandrova S, Tatlock Z, Cakmak M (2015) RoboFlow: a flow-based visual programming language for mobile manipulation tasks. IEEE 5537–5544

  • Baptista L (2021) Using Python and Google Colab to Teach Physical Chemistry During Pandemic. ChemRxiv. https://doi.org/10.26434/chemrxiv.13656665.v1

  • Baxter MJ, Fedigan LM (1979) Grooming and consort partner selection in a troop of Japanese monkeys (Macaca fuscata). Arch Sex Behav 8:445–458

    Article  CAS  PubMed  Google Scholar 

  • Beltzung B, Pelé M, Renoult JP, Sueur C (2023) Deep learning for studying drawing behaviour: A review. Front Psychol 14:992541

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethke R, Taylor M, Amstrup S, Messier F (1996) Population delineation of polar bears using satellite collar data. Ecol Appl 6:311–317

    Article  Google Scholar 

  • Bogucki R, Cygan M, Khan CB et al (2019) Applying deep learning to right whale photo identification. Conserv Biol 33:676–684

    Article  PubMed  Google Scholar 

  • Brakes P, Dall SRX, Aplin LM et al (2019) Animal cultures matter for conservation. Science 363:1032–1034. https://doi.org/10.1126/science.aaw3557

    Article  CAS  PubMed  Google Scholar 

  • Brookes O, Gray S, Bennett P et al (2022) Evaluating cognitive enrichment for zoo-housed gorillas using facial recognition. Front Vet Sci 9:886720

    Article  PubMed  PubMed Central  Google Scholar 

  • Charpentier MJ, Harté M, Poirotte C et al (2020) Same father, same face: deep learning reveals selection for signaling kinship in a wild primate. Sci Adv. https://doi.org/10.1126/sciadv.aba3274

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan R, Ghanshala KK, Joshi R (2018) Convolutional neural network (CNN) for image detection and recognition. IEEE 278–282

  • Clutton-Brock T, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25:562–573

    Article  PubMed  Google Scholar 

  • Crouse D, Jacobs RL, Richardson Z et al (2017) LemurFaceID: a face recognition system to facilitate individual identification of lemurs. Bmc Zoology 2:1–14

    Article  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal, Complex Systems 1695. https://igraph.org

  • de Silva EM, Kumarasinghe P, Indrajith KK et al (2022) Feasibility of using convolutional neural networks for individual-identification of wild Asian elephants. Mamm Biol 102:931–941

    Article  Google Scholar 

  • Dufour V, Petit O (2010) Recognition of monkey faces by monkey experts. J Ethol 28:231–238. https://doi.org/10.1007/s10164-009-0174-8

    Article  Google Scholar 

  • Enari H (2021) Human–macaque conflicts in shrinking communities: recent achievements and challenges in problem solving in modern Japan. Mammal Study 46:115–130

    Article  Google Scholar 

  • Fedigan LM, Asquith PJ (Editors) (1991) The monkeys of Arashiyama: thirty-five years of research in Japan and the West. State University of New York Press, Albany

  • Fehlmann G, King AJ (2016) Bio-logging. Curr Biol 26:R830–R831

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AC, Silva LR, Renna F et al (2020) Deep learning-based methods for individual recognition in small birds. Methods Ecol Evol 11:1072–1085. https://doi.org/10.1111/2041-210X.13436

    Article  Google Scholar 

  • Guo S, Xu P, Miao Q et al (2020) Automatic identification of individual primates with deep learning techniques. Iscience. https://doi.org/10.1016/j.isci.2020.101412

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MF, Smith ML, Smith LN et al (2018) Towards on-farm pig face recognition using convolutional neural networks. Comput Ind 98:145–152

    Article  Google Scholar 

  • Hermona GB, Sharmab D (2021) Non-Invasive techniques for identification of individuals within a species: a computational review. Eco Env & Cons 27:S20–S34

    Google Scholar 

  • Hoppitt WJE, Farine DR (2018) Association indices for quantifying social relationships: how to deal with missing observations of individuals or groups. Anim Behav 136:227–238. https://doi.org/10.1016/j.anbehav.2017.08.029

    Article  Google Scholar 

  • Hou J, He Y, Yang H et al (2020) Identification of animal individuals using deep learning: a case study of giant panda. Biol Cons 242:108414

    Article  Google Scholar 

  • Huffman MA, Leca JB, Nahallage CA (2010) Cultured Japanese macaques: a multidisciplinary approach to stone handling behaviour and its implications for the evolution of behavioral tradition in nonhuman primates. In: Nakagawa N, Nakamichi M, Sugiura H (eds). The Japanese Macaques. Springer Science & Business Media, p 191–219

  • Imambi S, Prakash KB, Kanagachidambaresan GR (2021) PyTorch. In: Prakash, K.B., Kanagachidambaresan, G.R. (eds) Programming with TensorFlow. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-57077-4_10

  • Ishizuka S, Inoue E (2023) Sex-Specific Effects of Juvenile Offspring on their Mothers’ Social Relationships with Other Females in Japanese Macaques (Macaca fuscata) on Shodoshima Island. Int J Primatol. https://doi.org/10.1007/s10764-023-00355-w

    Article  Google Scholar 

  • Iwamoto T (1974) A bioeconomic study on a provisioned troop of Japanese monkeys (Macaca fuscata fuscata) at koshima islet, Miyazaki. Primates 15:241–262. https://doi.org/10.1007/BF01742286

    Article  Google Scholar 

  • Jocher G, Chaurasia A, Stoken A, Borovec J, et al (2020) ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (v7.0). Zenodo. https://doi.org/10.5281/zenodo.7347926

  • Johnson T, Pilleboue E, Herbrich M et al (2023) Management of social behaviour of domestic yaks in Manang, Nepal: an etho-ethnographic study. Animals 13:248. https://doi.org/10.3390/ani13020248

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai M (1965) Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates 6:1–30

    Article  Google Scholar 

  • Koyama N (1967) On dominance rank and kinship of a wild Japanese monkey troop in Arashiyama. Primates 8:189–216

    Article  Google Scholar 

  • Koyama NF (2003) Matrilineal cohesion and social networks in Macaca fuscata. Int J Primatol 24:797–811

    Article  Google Scholar 

  • Kühl HS, Burghardt T (2013) Animal biometrics: quantifying and detecting phenotypic appearance. Trends Ecol Evol 28:432–441

    Article  PubMed  Google Scholar 

  • Lee HK, Choi KW, Kong D, Won J (2013) Improved Kanade-Lucas-Tomasi tracker for images with scale changes. In: 2013 IEEE International Conference on Consumer Electronics (ICCE), p 33–34

  • Lin Q, Ye G, Wang J, Liu H (2022) RoboFlow: a Data-centric Workflow Management System for Developing AI-enhanced Robots Qinjie Lin, Guo Ye, Jiayi Wang, Han Liu Proceedings of the 5th Conference on Robot Learning, PMLR 164:1789–1794

  • Miele V, Dussert G, Spataro B et al (2021) Revisiting animal photo-identification using deep metric learning and network analysis. Methods Ecol Evol 12:863–873. https://doi.org/10.1111/2041-210X.13577

    Article  Google Scholar 

  • Nakamichi M (1989) Sex differences in social development during the first 4 years in a free-ranging group of Japanese monkeys, Macaca fuscata. Anim Behav 38:737–748

    Article  Google Scholar 

  • Nakamichi M, Shizawa Y (2003) Distribution of grooming among adult females in a large, free-ranging group of Japanese macaques. Int J Primatol 24:607–625

    Article  Google Scholar 

  • Nelson MJ, Hoover AK (2020) Notes on Using Google Colaboratory in AI Education. In: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education. Association for Computing Machinery, New York, NY, USA, p 533–534

  • Otani Y, Ogawa H (2020) Individual identification of Japanese macaques (Macaca fuscata) using a face recognition system and a limited number of learning images. Biorxiv 1028:012119

    Google Scholar 

  • Otani Y, Ogawa H (2021) Potency of individual identification of Japanese Macaques (Macaca fuscata) using a face recognition system and a limited number of learning images. Jmam 46:85–93. https://doi.org/10.3106/ms2020-0071

    Article  Google Scholar 

  • Pasquaretta C, Levé M, Claidière N et al (2014) Social networks in primates: smart and tolerant species have more efficient networks. Sci Rep 4:1–8. https://doi.org/10.1038/srep07600

    Article  CAS  Google Scholar 

  • Rebout N, De Marco A, Lone J-C et al (2020) Tolerant and intolerant macaques show different levels of structural complexity in their vocal communication. Proc R Soc B 287:20200439

    Article  PubMed  PubMed Central  Google Scholar 

  • Romano V, Duboscq J, Sarabian C et al (2016) Modeling infection transmission in primate networks to predict centrality-based risk. Am J Primatol 78:767–779. https://doi.org/10.1002/ajp.22542

    Article  PubMed  Google Scholar 

  • Romano V, MacIntosh AJJ, Sueur C (2020) Stemming the flow: information, infection, and social evolution. Trends Ecol Evol 35:849–853. https://doi.org/10.1016/j.tree.2020.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Schofield D, Nagrani A, Zisserman A et al (2019) Chimpanzee face recognition from videos in the wild using deep learning. Sci Adv. https://doi.org/10.1126/sciadv.aaw0736

    Article  PubMed  PubMed Central  Google Scholar 

  • Schofield DP, Albery GF, Firth JA et al (2023) Automated face recognition using deep neural networks produces robust primate social networks and sociality measures. Methods Ecol Evol 14:1937–1951

    Article  Google Scholar 

  • Shi C, Liu D, Cui Y et al (2020) Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr Zool 15:461–470

    Article  PubMed  Google Scholar 

  • Shimada M, Sueur C (2018) Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds. Am J Primatol 80:e22728

    Article  Google Scholar 

  • Sinha S, Agarwal M, Vatsa M, Singh R, Anand S (2018) Exploring bias in primate face detection and recognition. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops (pp. 0-0)

  • Soltis J (1999) Measuring male-female relationships during the mating season in wild Japanese macaques (Macaca fuscata yakui). Primates 40:453–467

    Article  Google Scholar 

  • Sosa S, Puga-Gonzalez I, Hu F et al (2020) A multilevel statistical toolkit to study animal social networks: the Animal Network Toolkit Software (ANTs) R package. Sci Rep 10:12507. https://doi.org/10.1038/s41598-020-69265-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa S, Sueur C, Puga-Gonzalez I (2021) Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol Evol 12:10–21. https://doi.org/10.1111/2041-210X.13366

    Article  Google Scholar 

  • Stevens E, Antiga L, Viehmann T (2020) Deep learning with PyTorch. Manning Publications, Cham

    Google Scholar 

  • Sueur C, Shimada M (2014) Social network formed by juvenile Japanese macaques in Kinkazan. Primate Res Suppl 30:38–38. https://doi.org/10.14907/primate.30.0_38_1

    Article  Google Scholar 

  • Sugiyama Y (1976) Life history of male Japanese monkeys. Advances in the Study of Behavior. Elsevier, pp 255–284

    Google Scholar 

  • Tieo S, Restrepo-Ortiz CX, Roura-Torres B et al (2023) The Mandrillus face database: a portrait image database for individual and sex recognition, and age prediction in a non-human primate. Data Brief 47:108939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar S (2006) Converting video formats with FFmpeg. Linux Journal 2006:10

    Google Scholar 

  • Tsunoda H, Enari H (2020) A strategy for wildlife management in depopulating rural areas of Japan. Conserv Biol 34:819–828

    Article  PubMed  Google Scholar 

  • Ueno M, Yamamoto H, Yamada K, Itakura S (2021) Individual recognition of monkey (Macaca fuscata) and human (Homo sapiens) images in primatologists. J Comp Psychol 135:394–405. https://doi.org/10.1037/com0000285

    Article  PubMed  Google Scholar 

  • Ueno M, Kabata R, Hayashi H et al (2022) Automatic individual recognition of Japanese macaques (Macaca fuscata) from sequential images. Ethology 128:461–470

    Article  Google Scholar 

  • Valletta JJ, Torney C, Kings M et al (2017) Applications of machine learning in animal behaviour studies. Anim Behav 124:203–220

    Article  Google Scholar 

  • Walker KA, Trites AW, Haulena M, Weary DM (2011) A review of the effects of different marking and tagging techniques on marine mammals. Wildl Res 39:15–30

    Article  Google Scholar 

  • Weinstein BG (2018) A computer vision for animal ecology. J Anim Ecol 87:533–545

    Article  PubMed  Google Scholar 

  • Wich SA, Utami-Atmoko SS, Setia TM et al (2004) Life history of wild Sumatran orangutans (Pongo abelii). J Hum Evol 47:385–398

    Article  CAS  PubMed  Google Scholar 

  • Zech JR, Forde JZ, Littman ML (2019) Individual predictions matter: Assessing the effect of data ordering in training fine-tuned cnns for medical imaging. arXiv preprint arXiv:191203606

  • Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildl Biol 2020:1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Sueur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulet, J., Molina, A., Beltzung, B. et al. Deep learning for automatic facial detection and recognition in Japanese macaques: illuminating social networks. Primates (2024). https://doi.org/10.1007/s10329-024-01137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10329-024-01137-5

Keywords

Navigation