Skip to main content

Molecular phylogenetics and phylogeography of all the Saimiri taxa (Cebidae, Primates) inferred from mt COI and COII gene sequences

Abstract

Some previous genetic studies have been performed to resolve the molecular phylogenetics of the squirrel monkeys (Saimiri). However, these studies did not show consensus in how many taxa are within this genus and what the relationships among them are. For this reason, we sequenced 2,237 base pairs of the mt COI and COII genes in 218 Saimiri individuals. All, less 12 S. sciureus sciureus from French Guyana, were sampled in the wild. These samples represented all the living Saimiri taxa recognized. There were four main findings of this study. (1) Our analysis detected 17 different Saimiri groups: albigena, cassiquiarensis, five polyphyletic macrodon groups, three polyphyletic ustus groups, sciureus, collinsi, boliviensis, peruviensis, vanzolinii, oerstedii and citrinellus. Four different phylogenetic trees showed the Central American squirrel monkey (S. oerstedii) as the most differentiated taxon. In contrast, albigena was indicated to be the most recent taxon. (2) There was extensive hybridization and/or historical introgression among albigena, different macrodon groups, peruviensis, sciureus and collinsi. (3) Different tests showed that our maximum likelihood tree was consistent with two species of Saimiri: S. oerstedii and S. sciureus. If no cases of hybridization were detected implicating S. vanzolinii, this could be a third recognized species. (4) We also estimated that the first temporal splits within this genus occurred around 1.4–1.6 million years ago, which indicates that the temporal split events within Saimiri were correlated with Pleistocene climatic changes. If the biological species concept is applied because, in this case, it is operative due to observed hybridization in the wild, the number of species within this genus is probably more limited than recently proposed by other authors. The Pleistocene was the fundamental epoch when the mitochondrial Saimiri diversification process occurred.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder archonta. Proc Natl Acad Sci USA 88:10317–10321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agrizzi J, Loss AC, Farro APC, Duda R, Costa LP, Leite YLR (2012) Molecular diagnosis of Atlantic forest mammals using mitochondrial DNA sequences: didelphid marsupials. Open Zool J 5:2–9

    Article  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Ascunce MS, Hasson E, Mudry MD (2003) COII: a useful tool for inferring phylogenetic relationships among new world monkeys (Primates, Platyrrhini). Zool Scripta 32:397–406

    Article  Google Scholar 

  • Ashley MV, Vaughn TA (1995) Owl monkeys (Aotus) are highly divergent in mitochondrial cytochrome c oxidase (COII) sequences. Int J Primatol 5:793–807

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522

    Google Scholar 

  • Ayres JM (1985) On a new species of squirrel monkey, genus Saimiri, from Brazilian Amazonia (Primates, Cebidae). Pap Avul Zool 36:147–164

    Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Boinski S, Cropp SJ (1999) Disparate data sets resolve squirrel monkey (Saimiri) taxonomy: implications for behavioral ecology and biomedical usage. Int J Primatol 20:237–256

    Article  Google Scholar 

  • Boinski S, Newman JD (1988) Preliminary observations on squirrel monkey (Saimiri oerstedi) vocalizations in Costa Rica. Amer J Primatol 14:329–343

    Article  Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Burrell AS, Jolly CJ, Tosi AJ, Disotell TR (2009) Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylog Evol 51:340–348

    Article  CAS  Google Scholar 

  • Cabrera A (1957) Catalogo de los mamiferos de America del Sur. Rev Mus Argent Cienc Nat Bernardino Rivadavia Cienc Zool 4:1–307

    Google Scholar 

  • Cabrera A, Yepes J (1940) Historia Natural. vol I and II, Buenos Aires, Ediar

  • Chiou KL, Pozzi L, Lynch Alfaro JW, Di Fiore A (2011) Pleistocene diversification of living squirrel monkeys (Saimiri spp) inferred from complete mitochondrial genome sequences. Mol Phylog Evol 59:736–745

    Article  Google Scholar 

  • Coimbra-Filho AF, Mittermeier RA (1981) Ecology and behavior of Neotropical Primates. Academia Brasileira de Ciências, Rio de Janeiro

    Google Scholar 

  • Collins AC, Dubach JM (2000) Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. Int J Primat 21:381–420

    Article  Google Scholar 

  • Cooper RW (1968) Squirrel monkey taxonomy and supply. In: Rosenblum LA, Cooper RW (eds) The squirrel monkey. Academic Press, New York, pp 1–29

    Chapter  Google Scholar 

  • Cortes-Ortiz L, Bermingham E, Rico C, Rodriguez-Luna E, Sampaio I, Ruiz-Garcia M (2003) Molecular systematics and biogeography of the Neotropical monkey genus. Alouatta Mol Phylogenet Evol 26:64–81

    Article  CAS  Google Scholar 

  • Cossíos ED, Lucherini M, Ruiz-García M, Angers B (2009) Influence of ancient glacial periods on the Andean fauna: the case of the Pampas cat (Leopardus colocolo). BMC Evol Biol 9:68–79

    Article  PubMed Central  PubMed  Google Scholar 

  • Costello RK, Dickinson C, Rosenberger AL, Boinski S, Szalay FS (1993) Squirrel monkey (genus Saimiri) taxonomy. A multidisciplinary study of the biology of species. In: Kimbel WH, Martin LB (eds) Species, species concepts, and Primate evolution. Plenum Press, New York, pp 177–210

    Chapter  Google Scholar 

  • Cropp S, Boinski S (2000) The Central American squirrel monkey (Saimiri oerstedii): introduced hybrid or endemic species. Mol Phylogenet Evol 16:350–365

    Article  CAS  PubMed  Google Scholar 

  • da Cruz Lima E (1945) Mammals of Amazonia. Vol. 1. General introduction and primates. Museu Paraense Emilio Goeldi de Historia Natural e Etnografia, Rio de Janeiro

    Google Scholar 

  • Dobzhansky TH (1971) Evolutionary oscillations in Drosophila pseudoobscura. In: Ford E (ed) Ecological genetics and evolution. Oxford Blackwell Scientific, Oxford, pp 109–133

    Chapter  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed Central  PubMed  Google Scholar 

  • Dutrillaux B (1988) New interpretation of the presumed common ancestral karyotype of platyrrhine monkeys. Fol Primat 50:226–229

    Article  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981) The ancestral karyotype of platyrrhine monkeys. Cytogenet Genet 30:232–242

    Article  CAS  Google Scholar 

  • Elliot DG (1913) A review of Primates. Monograph Series. American Museum of Natural History, New York

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Ferrari SF (1993) The adaptive radiation of Amazonian callitrichids (Primates, Platyrrhini). Evol Biol 7:81–103

    Google Scholar 

  • Ferrari SF (2004) Biogeography of Amazonian Primates. A Primatologia no Brasil 8:101–122

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Freeman S, Herron JC (1998) Evolutionary analysis. Prentice Hall, Upper Saddle River, pp 1–786

    Google Scholar 

  • Goldman N, Anderson P, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670

    Article  CAS  PubMed  Google Scholar 

  • Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, Washington

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Amer Assoc Advanc Science 165:131–137

    CAS  Google Scholar 

  • Haffer J (1982) General aspects of the refuge theory. In: Prance GT (ed) Biological diversification in the Tropics. Columbia University Press, New York, pp 6–24

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hershkovitz P (1972) The recent mammals of the Neotropical region: a zoogeographic and ecological region: a zoogeographic and ecological review. In: Keast A, Erk FC, Glass B (eds) Evolution, mammals and southern continents. State University of New York Press, Albany, pp 311–431

    Google Scholar 

  • Hershkovitz P (1984) Taxonomy of squirrel monkeys genus Saimiri (Cebidae, Platyrrhini): a preliminary report with description of Hitherto Unnamed Form. Am J Primatol 7:155–210

    Article  Google Scholar 

  • Hershkovitz P (1987) The taxonomy of South American Sakis, genus Pithecia (Cebidae, Platyrrhini): a preliminary report and critical review with the description of a new species and a new subspecies. Amer J Primat 12:387–468

    Article  Google Scholar 

  • Hill WCO (1960) Primates: comparative anatomy and taxonomy. IV Cebidae, Part A. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Huelsenbeck JP, Bull JJ (1996) A likelihood ratio test to detect conflicting phylogenetic signal. Syst Biol 45:92–98

    Article  Google Scholar 

  • Jones TC, Thorington RW Jr, Hu MM, Adams E, Cooper RW (1973) Karyotypes of squirrel monkeys (Saimiri sciureus) from different geographic regions. Amer J Phys Anthrop 38:269–278

    Article  CAS  PubMed  Google Scholar 

  • Kartavtsev Y (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22:55–65

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lavergne A, Ruiz-García M, Lacaste V, Catzeflis F, Lacote S, De Thoisy B (2010) Taxonomy and phylogeny of squirrel monkey (genus Saimiri) using cytochrome b genetic analysis. Amer J Primatol 72:242–253

    Article  CAS  Google Scholar 

  • Li WH (1997) Molecular evolution. Sinauer, Sunderland

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Lim BK (2012) Preliminary assessment of Neotropical mammal DNA barcodes: an underestimation of biodiversity. Open Zool J 5:10–17

    Article  CAS  Google Scholar 

  • Lönnberg E (1940) Notes on some members of the genus Saimiri. Ark Zool 32:1–18

    Google Scholar 

  • Ma NSF, Jones TC, Thorington RW, Cooper RW (1974) Chromosome banding patterns in squirrel monkeys (Saimiri sciureus). J Med Primatol 3:120–137

    Google Scholar 

  • Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR (2011) Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6:e19449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mau B (1996) Bayesian phylogenetic inference via markov chain monte carlo methods. University of Wisconsin, Madison

    Google Scholar 

  • Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via markov chain montecarlo methods. Biometrics 55:1–12

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Moore CM, Harris CP, Abee CR (1990) Distribution of chromosomal polymorphisms in three subspecies of squirrel monkeys (genus Saimiri). Cytogen Cell Gen 53:118–122

    Article  CAS  Google Scholar 

  • Morral N, Bertrantpetit J, Estivill X (1994) The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet 7:169–175

    Article  CAS  PubMed  Google Scholar 

  • Napier PH (1976) Catalogue of Primates in the British Museum (Natural History), Part 1: Families Callitrichidae and Cebidae. British Museum (Natural History), London

    Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living Primates. Academic Press, New York

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Olson MA, Zajac RN, Russello MA (2009) Estuarine-scale genetic variation in the polychaete Hobsonia florida (Ampharetidae; Annelida) in long island sound and relationships to Pleistocene glaciations. Biol Bull 217:86–94

    PubMed  Google Scholar 

  • Osgood WH (1916) Mammals of the Collins-Day South America expedition. Field Museum of Natural History. Zool Ser 10(14):199–216

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinform 14:817–818

    Article  CAS  Google Scholar 

  • Rambaut A, Grassly NC (1997) Seq-gen: an application for the monte carlo simulation of DNA sequence evolution along phylogenetic trees. Comp Appl Biosci 13:235–238

    CAS  PubMed  Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Robinson JG, Janson CH (1987) Capuchins, squirrel monkeys, and atelines: socioecological convergence with old world primates. In: Smuts BB (ed) Primate Societies. University of Chicago Press, Chicago, pp 44–53

    Google Scholar 

  • Ruiz-García M, Pinedo-Castro M (2010) Molecular systematics and phylogeography of the genus Lagothrix (Atelidae, Primates) by means of mitochondrial COII gene. Folia Primatol 81:109–128

    Article  PubMed  Google Scholar 

  • Ruiz-García M, Castillo MI, Vásquez C, Rodríguez K, Pinedo M, Shostell J, Leguizamon N (2010) Molecular Phylogenetics and Phylogeography of the White-fronted capuchin (Cebus albifrons; Cebidae, Primates) by means of mtCOII gene sequences. Mol Phylogenet Evol 57:1049–1061

    Article  PubMed  Google Scholar 

  • Ruiz-García M, Vásquez C, Camargo E, Leguizamon N, Castellanos-Mora LF, Vallejo A, Gálvez H, Shostell J, Alvarez D (2011) The molecular phylogeny of the Aotus genus (Cebidae, Primates). Int J Primatol 32:1218–1241

    Article  Google Scholar 

  • Ruiz-García M, Castillo MI, Lichilin N, Pinedo-Castro M (2012a) Molecular relationships and classification of several tufted capuchin lineages (Cebus apella, C. xanthosternos and C. nigritus, Cebidae), by means of mitochondrial COII gene sequences. Fol Primatol 83:100–125

    Article  Google Scholar 

  • Ruiz-García M, Castillo MI, Ledezma A, Leguizamon N, Sánchez R, Chinchilla M, Gutierrez-Espeleta G (2012b) Molecular systematics and phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of mitochondrial COII gene. Am J Primatol 74:366–380

    Article  PubMed  Google Scholar 

  • Ruiz-García M, Pinedo-Castro M (2013) Population genetics and phylogeographic analyses of the jaguarundi (Puma yagouaroundi) by means of three mitochondrial markers: the first molecular population study of this species. In: Ruiz-Garcia M, Shostell JM (eds) Molecular population genetics, phylogenetics, evolutionary biology and conservation of the Neotropical carnivores. Nova Science Publishers, Hauppauge, pp 245–288

    Google Scholar 

  • Ruiz-García M, Rivas-Sánchez D, Lichilín-Ortiz N (2013) Phylogenetics relationships among four putative taxa of foxes of the Pseudoalopex genus (Canidae, Carnivora) and molecular population genetics of Ps. culpaeus and Ps. sechurae. In: Ruiz-García M, Shostell J (eds) Molecular Population Genetics, Phylogenetics, Evolutionary Biology and Conservation of the Neotropical Carnivores. Nova Science Publishers, New York, pp 97–128

    Google Scholar 

  • Ruiz-García M, Pinedo-Castro M, Shostell JM (2014) How many genera and species of wolly monkeys (Atelidae, Platyrrhine, Primates) are there? The first molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Mol Phylogenet Evol 79:179–198

    Article  PubMed  Google Scholar 

  • Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the 1203 African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88:1571–1574

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shimodaira H, Hasegawa H (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Silva BTF, Sampaio MIC, Schneider H, Schneider MPC, Montoya E, Encarnación F, Callegari-Jacques SM, Salzano FM (1992) Natural hybridization between Saimiri taxa in the Peruvian Amazonia. Primates 33:107–113

    Article  Google Scholar 

  • Silva BTF, Sampaio MIC, Schneider H, Schneider MPC, Montoya E, Encarnacion F, Callegari-Jacques SM, Salzano FM (1993) Protein electrophoretic variability in Saimiri and the question of its species status. Amer J Phys Anthrop 29:183–193

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony and other methods. http://paup.csit.fsu.edu. pp. 1-142

  • Swofford DL, Olsen GL, Wadell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM (ed) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thoisy B, Goncalves da Silva A, Ruiz-García M, Tapia A, Ramirez O, Arana M, Quse V, Paz-y-Miño C, Tobler M, Pedraza C, Lavergne A (2010) Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the Lowland tapir (Tapirus terrestris). BMC Evol Biol 10:278–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Thorington RW (1976) The systematics of New World monkeys. First InterAmerican conference on conservation and utilization of American nonhuman Primates in biomedical research, pp. 8–18

  • Thorington RW (1985) The taxonomy and distribution of squirrel monkeys (Saimiri). In: Rosenblum RA, Coe CL (eds) The handbook of squirrel monkey research. Plenum Press, New York, pp 1–33

    Chapter  Google Scholar 

  • Van der Hammen T (1992) Historia, Ecología y Vegetación. Corporación Colombiana para la Amazonía, Araracuara

    Google Scholar 

  • Van der Hammen T, Duivenvoorden JF, Lips JM, Urrego LE, Espejo N (1991) El cuaternario tardío del área del Medio Caquetá (Amazonia colombiana). Col Amaz 5:63–90

    Google Scholar 

  • Von Pusch A (1942) Die arten der gattung Cebus. Z Saugeterklul 16:187–237

    Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750

    Article  CAS  PubMed  Google Scholar 

  • Yonenaga-Yassuda Y, Chu TR (1985) Chromosome banding patterns of Saimiri vanzolinii Ayres, 1985 (Primater, Cebidae). Pap Avul Zool 36:165–168

    Google Scholar 

Download references

Acknowledgments

Thanks go to Dr. Diana Alvarez, Pablo Escobar-Armel, Luisa Fernanda Castellanos-Mora and Nicolás Lichilín for their respective help in obtaining Saimiri samples during the last 14 years. The sampling procedures employed in this work complied with all the protocols approved by the Ethical Committee of the Pontificia Universidad Javeriana (No. 45684) and the laws of the Ministerio de Ambiente, Vivienda y Desarrollo Territorial (R 1256) from Colombia. This research adhered to the stipulations set by the American Society of Primatologists. Many thanks go to the Peruvian Ministry of Environment, to the PRODUCE (Oficio No 5225), from Peru, the Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales (INRENA, Peru), to the Colección Boliviana de Fauna (Dr. Julieta Vargas; La Paz, Bolivia), to CITES Bolivia (permissions 01482, 01483, 01737, 01738, 01739, 01740, 01741) and to the Ministerio del Ambiente (permission HJK-9788) in Coca (Ecuador) for their role in facilitating the obtainment of the collection permits in Peru, Bolivia and Ecuador. Also many thanks to the Brazilian institutions for collaborating with this study (IBAMA protocol number 77933). All animal sampling in French Guiana was carried out in accordance with French animal care regulations and laws. The first author also thanks the Ticuna, Yucuna, Yaguas, Witoto and Cocama Indian communities at the Colombian Amazon, the Bora, Ocaina, Shipibo-Comibo, Capanahua, Angoteros, Orejón, Yaguas, Cocama, Kishuarana and Alama in the Peruvian Amazon, the Sirionó, and Chacobo in the Bolivian Amazon and the Marubos, Kulina, Maku and Waimiri-Atroari communities in the Brazilian Amazon. Dr. Joseph Shostell helped with the English syntax.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz-García.

Electronic supplementary material

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, M., Luengas-Villamil, K., Leguizamon, N. et al. Molecular phylogenetics and phylogeography of all the Saimiri taxa (Cebidae, Primates) inferred from mt COI and COII gene sequences. Primates 56, 145–161 (2015). https://doi.org/10.1007/s10329-014-0452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-014-0452-0

Keywords

  • Saimiri
  • Phylogenetics and phylogeography
  • Mitochondrial COI and COII genes
  • Biological species concept
  • Pleistocene climatic changes