Abstract
The California National Primate Research Center maintains a small colony of titi monkeys (Callicebus cupreus) for behavioral studies. While short tandem repeat (STR) markers are critical for the genetic management of the center’s rhesus macaque (Macaca mulatta) breeding colony, STRs are not used for this purpose in the maintenance of the center’s titi monkey colony. Consequently, the genetic structure of this titi monkey population has not been characterized. A lack of highly informative genetic markers in titi monkeys has also resulted in scant knowledge of the species’ genetic variation in the wild. The purpose of this study was to develop a panel of highly polymorphic titi monkey STRs using a cross-species polymerase chain reaction (PCR) amplification protocol that could be used for the genetic management of the titi monkey colony. We screened 16 STR primer pairs and selected those that generated robust and reproducible polymorphic amplicons. Loci that were found to be highly polymorphic, very likely to be useful for parentage verification, pedigree assessment, and studying titi monkey population genetics, were validated using Hardy–Weinberg equilibrium and linkage disequilibrium analyses. The genetic data generated in this study were also used to assess directly the impact on the colony’s genetic diversity of a recent adenovirus outbreak. While the adenovirus epizootic disease caused significant mortality (19 deaths among the 65 colony animals), our results suggest that the disease exhibited little or no influence on the overall genetic diversity of the colony.
This is a preview of subscription content, access via your institution.
References
Babb PL, McIntosh AM, Fernandez-Duque E, Di Fiore A, Schurr TG (2011) An optimized microsatellite genotyping strategy for assessing genetic identity and kinship in Azara’s owl monkeys (Aotus azarai). Folia Primatol 82:107–117. doi:10.1159/000330564
Bailey C, Mansfield K (2010) Emerging and reemerging infectious diseases of nonhuman primates in the laboratory setting. Vet Pathol 47:462–481. doi:10.1177/0300985810363719
Becker J, Baker AJ, Frampton T, Pullen PK, Bales KL, Mendoza SP, Mason WA (2013) Pitheciines in captivity: challenges and opportunities, past, present and future. In: Veiga LM, Barnett AA, Ferrari SF, Norconk MA (eds) Evolutionary biology and conservation of Titis, Sakis and Uacaris. Cambridge University Press, New York, pp 344–349
Chambers KE, Reichard UH, Moller A, Nowak K, Vigilant L (2004) Cross-species amplification of human microsatellite markers using noninvasive samples from white-handed gibbons (Hylobates lar). Am J Primatol 64:19–27. doi:10.1002/ajp.20058
Chen EC, Yagi S, Kelly KR, Mendoza SP, Tarara RP, Canfield DR, Maninger N, Rosenthal A, Spinner A, Bales KL, Schnurr DP, Lerche NW, Chiu CY (2011) Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony. PLoS Pathog 7:e1002155. doi:10.1371/journal.ppat.1002155
Di Fiore A, Fleischer RC (2004) Microsatellite markers for woolly monkeys (Lagothrix lagotricha) and their amplification in other new world primates (Primates: Platyrrhini). Mol Ecol Notes 4:246–249. doi:10.1111/j.1471-8286.2004.00631.x
Ellsworth JA, Hoelzer GA (1998) Characterization of microsatellite loci in a new world primate, the mantled howler monkey (Alouatta palliata). Mol Ecol 7:657–658. doi:10.1046/j.1365-294X.1998.00340.x
Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. doi:10.4137/ebo.s0
Fernandez-Duque E, Valeggia CR, Mason WA (2000) Effects of pair-bond and social context on male-female interactions in captive titi monkeys (Callicebus moloch, Primates: Cebidae). Ethology 106:1067–1082. doi:10.1046/j.1439-0310.2000.00629.x
Goncalves EC, Silva A, Barbosa MSR, Schneider MPC (2004) Isolation and characterization of microsatellite loci in Amazonian red-handed howlers Alouatta belzebul (Primates, Plathyrrini). Mol Ecol Notes 4:406–408. doi:10.1111/j.1471-8286.2004.00667.x
Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1931–1938
Gualda-Barros J, Nascimento FOd, Amaral MKd (2012) A new species of Callicebus Thomas, 1903 (Primates, Pitheciidae) from the states of Mato Grosso and Pará, Brazil. Papéis Avulsos de Zoologia (São Paulo) 52:261–279
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi:10.2307/2532296
Hershkovitz P (1988) Origin, speciation, and distribution of South American titi monkeys, genus Callicebus (Family Cebidae, Platyrrhini). Proc Acad of Natl Sci Phila 140:240–272. doi:10.2307/4064927
Hershkovitz P (1990) Titis, new world monkeys of the genus Callicebus (Cebidae, Platyrrhini): a preliminary taxonomic review. Fieldiana Zool n.s.:1–109
Hughes CR, Queller DC (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol 2:131–137. doi:10.1111/j.1365-294X.1993.tb00102.x
Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30. doi:10.1111/j.1755-0998.2009.02778.x
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x
Kanthaswamy S, von Dollen A, Kurushima JD, Alminas O, Rogers J, Ferguson B, Lerche NW, Allen PC, Smith DG (2006) Microsatellite markers for standardized genetic management of captive colonies of rhesus macaques (Macaca mulatta). Am J Primatol 68:73–95. doi:10.1002/ajp.20207
Kanthaswamy S, Satkoski J, Kou A, Malladi V, Smith DG (2010) Detecting signatures of inter-regional and inter-specific hybridization among the Chinese rhesus macaque specific pathogen-free (SPF) population using single nucleotide polymorphic (SNP) markers. J Med Primatol 39:252–265
Kanthaswamy S, Ng J, Penedo MC, Ward T, Smith DG, Ha JC (2012) Population genetics of the Washington National Primate Research Center’s (WaNPRC) captive pigtailed macaque (Macaca nemestrina) population. Am J Primatol 74:1017–1027. doi:10.1002/ajp.22055
Kinzey WG (1981) The Titi Monkeys, Genus Callicebus. In: Coimbra-Filho AF, Mittermeier RA (eds) Ecology and behavior of Neotropical Primates, vol 1. Academia Brasileira de Ciencias, Rio de Janeiro, pp 241–276
Lorenz R, Mason WA (1971) Establishment of a colony of Titi monkeys. International Zoo Yearbook 11:168–174. doi:10.1111/j.1748-1090.1971.tb01896.x
Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x
Mason WA (1966) Social organization of the South Ameican monkey, Callicebus moloch: a preliminary report. Tulane stud zool 13:23–28
Mendoza SP, Mason WA (1986) Contrasting responses to intruders and to involuntary separation by monogamous and polygynous new world monkeys. Physiol Behav 38:795–801
Menescal LA, Goncalves EC, Silva A, Ferrari SF, Schneider MP (2009) Genetic diversity of red-bellied Titis (Callicebus moloch) from Eastern Amazonia based on microsatellite markers. Biochem Genet 47:235–240. doi:10.1007/s10528-008-9220-4
Moore CM, Leland MM, Brzyski RG, McKeand J, Witte SM, Rogers J (1998) A baboon (Papio hamadryas) with an isochromosome for the long arm of the X. Cytogenet Cell Genet 82:80–82
Muniz L, Vigilant L (2008) Permanent genetic resources: isolation and characterization of microsatellite markers in the white-faced capuchin monkey (Cebus capucinus) and cross-species amplification in other new world monkeys. Mol Ecol Resour 8:402–405. doi:10.1111/j.1471-8286.2007.01971.x
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249
Rogers J, Bergstrom M, Garcia Rt, Kaplan J, Arya A, Novakowski L, Johnson Z, Vinson A, Shelledy W (2005) A panel of 20 highly variable microsatellite polymorphisms in rhesus macaques (Macaca mulatta) selected for pedigree or population genetic analysis. Am J Primatol 67:377–383. doi:10.1002/ajp.20192
Smith KL, Alberts SC, Bayes MK, Bruford MW, Altmann J, Ober C (2000) Cross-species amplification, non-invasive genotyping, and non-Mendelian inheritance of human STRPs in Savannah baboons. Am J Primatol 51:219–227. doi:10.1002/1098-2345(200008)51:4<219:AID-AJP1>3.0.CO;2-G
Stanyon R, Bonvicino CR, Svartman M, Seuanez HN (2003) Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n = 16) known in primates. Chromosoma 112:201–206. doi:10.1007/s00412-003-0261-5
Valeggia CR, Mendoza SP, Fernandez-Duque E, Mason WA, Lasley B (1999) Reproductive biology of female titi monkeys (Callicebus moloch) in captivity. Am J Primatol 47:183–195. doi:10.1002/(SICI)1098-2345(1999)47:3<183:AID-AJP1>3.0.CO;2-J
van Roosmalen MGM, van Roosmalen T, Mittermeier RA (2002) A taxonomic review of the titi monkeys, genus Callicebus Thomas, 1903, with the description of two new species, Callicebus bernhardi and Callicebus stephennashi, from Brazilian Amazonia. Neotrop Primates 10:1–52
van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x
Walling CA, Pemberton JM, Hadfield JD, Kruuk LE (2010) Comparing parentage inference software: reanalysis of a red deer pedigree. Mol Ecol 19:1914–1928. doi:10.1111/j.1365-294X.2010.04604.x
Wright S (1978) Evolution and the genetics of populations : a treatise in four volumes. University of Chicago Press, Chicago, London
Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x
Acknowledgments
This study was supported by the California National Primate Research Center (CNPRC) base Grant (OD000169-48), as well as grants from the Good Nature Institute to KB (HD053555 and HD071998). This research adhered to the American Society of Primatologists’ principles for the ethical treatment of primates. Animals used in this research were managed in compliance with Institutional Animal Care and Use Committee (IACUC) regulations or in accordance with the National Institutes of Health guidelines or the US Department of Agriculture regulations prescribing the humane care and use of laboratory animals. The University of California, Davis, and the California National Primate Research Center are AAALAC accredited. The authors are very grateful to the reviewers for their thorough and insightful comments, which considerably improved the manuscript.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Mendoza, A., Ng, J., Bales, K.L. et al. Population genetics of the California National Primate Research Center’s (CNPRC) captive Callicebus cupreus colony. Primates 56, 37–44 (2015). https://doi.org/10.1007/s10329-014-0446-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10329-014-0446-y