Skip to main content
Log in

Evaluating home range techniques: use of Global Positioning System (GPS) collar data from chacma baboons

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Global Positioning System (GPS) collars have revolutionized the field of spatial ecology, but to date, few primate studies have used them. We fitted a free-ranging, semi-habituated, juvenile male chacma baboon (Papio hamadryas ursinus) with an automatic self-releasing GPS collar and tracked his movements for 359 days. The collar captured 4254 fixes out of 5719 programmed opportunities, a 74.4 % acquisition rate, suggesting that the collar effectively tracked this baboon in a variety of habitat types. Of the data points captured, 73.7 % were three-dimensional fixes, and of these fixes, 66.9 % were highly accurate, having a dilution of precision of less than four. We calculated home range using three protocols with three estimation methods: minimum convex polygon, fixed kernel-density estimation (KDE), and fixed r local convex hull. Using all data points and the 95 % contour, these methods created home range estimations ranging from 10.8 to 23.1 km2 for this baboon troop. Our results indicate that the KDE output using all data locations most accurately represented our data set, as it created a continuous home range boundary that excluded unused areas and outlying, potentially exploratory data points while including all seven sleeping sites and a movement corridor. However, home range estimations generated from KDE varied from 15.4 to 18.8 km2 depending on the smoothing parameter used. Our results demonstrated that the ad hoc smoothing parameter selection technique was a better method for our data set than either the least squares cross-validation or biased cross-validation techniques. Our results demonstrate the need for primatologists to develop a standardized reporting method which documents the tool, screening protocol, and smoothing parameter used in the creation of home range estimations in order to make comparisons that are meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts SC, Hollister-Smith J, Mututua RS, Sayialel SN, Muruthi PM, Warutere JK, Altmann J (2005) Seasonality and long term change in a savannah environment. In: Brockman DK, van Schaik CP (eds) Primate seasonality: implications for human evolution. Cambridge University Press, Cambridge, pp 157–196

    Chapter  Google Scholar 

  • American Society of Mammalogists (1998) Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J Mammal 74:1416–1431

    Google Scholar 

  • Berkeley College of Natural Resources (2011) LoCoH: powerful algorithms for finding home ranges. http://locoh.cnr.berkeley.edu/. Accessed 8 July 2011

  • Blair WF (1940) Notes on home ranges and populations of the short-tailed shrew. Ecology 21:284–288

    Article  Google Scholar 

  • Blundell GM, Maier JAK, Debevec EM (2001) Linear home ranges: effects of smoothing, sample size, and autocorrelation on kernel estimates. Ecol Monogr 71:469–489

    Article  Google Scholar 

  • Börger L, Francon N, de Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T (2006) Effects of sampling regime on the mean and variance of home range size estimates. J Anim Ecol 75:1393–1405

    Article  PubMed  Google Scholar 

  • Bowman JL, Kochanny CO, Demarais S, Leopold BD (2000) Evaluation of a GPS collar for white-tailed deer. Wildl Soc Bull 28:141–145

    Google Scholar 

  • Boyle SA, Lourenço WC, da Silva LR, Smith AT (2009) Home range estimates vary with sample size and methods. Folia Primatol 80:33–42

    Article  PubMed  Google Scholar 

  • British Colombia Ministry of Environment, Lands and Parks (2001) British Columbia standards, specifications, and guide-lines for resource surveys using Global Positioning System (GPS) technology. British Columbia Ministry of Environment, Lands and Parks, Victoria

  • Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28

    Article  Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Cain JW, Krausman PR, Jansen BD, Morgart JR (2005) Influence of topography and GPS fix interval on GPS collar performance. Wildl Soc 33:926–934

    Article  Google Scholar 

  • Clutton-Brock TH, Harvey PH (1977) Primate ecology and social organization. J Zool 183:1–29

    Article  Google Scholar 

  • Craighead FC, Craighead J, Cote CE, Buechner HK (1972) Satellite and ground radio tracking of elk. In: Galler S et al (eds) Animal orientation and navigation. NASA, Washington, DC, pp 99–111

    Google Scholar 

  • D’Eon RG, Delparte D (2005) Effects of radio-collar position and orientation on GPS radio-collar performance, and the implications of PDOP in data screening. J Appl Ecol 42:383–388

    Article  Google Scholar 

  • D’Eon RG, Serrouya R, Smith G, Kochanny CO (2002) GPS radio telemetry error and bias in mountainous terrain. Wildl Soc B 30:430–439

    Google Scholar 

  • De Solla S, Bondurianskz R, Brooks RJ (1999) Eliminating autocorrelation reduces biological relevance of home range estimates. J Anim Ecol 68:221–234

    Article  Google Scholar 

  • Di Bitetti MS (2001) Home-range use by the tufted capuchin monkey (Cebus apella nigritus) in a subtropical rainforest of Argentina. J Zool 253:33–45

    Article  Google Scholar 

  • Di Orio AP, Callas R, Schaefer RJ (2003) Performance of two GPS telemetry collars under different habitat conditions. Wildl Soc B 31:372–379

    Google Scholar 

  • Dominy NJ, Duncan B (2001) GPS and GIS methods in an African rain forest: applications to tropical ecology and conservation. Conserv Ecol 5:537–549

    Google Scholar 

  • Fedigen LM, Fedigan L, Chapman C, Glander KE (1988) Spider monkey home ranges: a comparison of radio telemetry and direct observation. Am J Primatol 16:19–29

    Article  Google Scholar 

  • Fieberg J, Matthiopoulos J, Hebblewhite M, Boyce MS, Frair JL (2010) Correlation and studies of habitat selection: problem, red herring or opportunity? Phil Trans R Soc B 365:2233–2244. doi:10.1098/rstb.2010.0079

    Article  PubMed  Google Scholar 

  • Frair JL, Nielsen SE, Merrill EH, Lele SR, Boyce MS, Munro RHM, Stenhouse GB, Beyer HL (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41:201–212

    Article  Google Scholar 

  • Frair JL, Feiberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Phil Trans R Soc B 365:2187–2200

    Article  PubMed  Google Scholar 

  • Getz WM, Wilmers CC (2004) A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27:489–505

    Article  Google Scholar 

  • Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2:e207

    Article  PubMed  Google Scholar 

  • Girard I, Dussault C, Ouellet JP, Courtois R, Caron A (2006) Balancing number of locations with number of individuals in telemetry studies. J Wildl Manag 70:1249–1256

    Article  Google Scholar 

  • Gitzen RA, Millspaugh JJ (2003) Comparison of least-squares cross-validation bandwidth options for kernel home-range estimation. Wildl Soc B 31:823–831

    Google Scholar 

  • Harris TR, Chapman CA (2007) Variation in diet and ranging of black and white colobus monkeys in Kibale National Park, Uganda. Primates 48:208–221

    Article  PubMed  Google Scholar 

  • Harris S, Cresswell WJ, Forde PG, Trewhella WJ, Woollard T, Wray S (1990) Home-range analysis using radio-tracking data—a review of problems and techniques particularly as applied to the study of mammals. Mammal Rev 20:97–123

    Article  Google Scholar 

  • Heard DC, Ciarniello LM, Seip DR (2008) Grizzly bear behavior and global positioning system collar fix rates. J Wildl Manag 72:596–602

    Article  Google Scholar 

  • Hebblewhite M, Percy M, Merrill EH (2007) Are all global positioning system collars created equal? Correcting habitat-induced bias using three brands in the Central Canadian Rockies. J Wildl Manag 71:2026–2033

    Article  Google Scholar 

  • Hemson G, Johnson P, South A, Kenward R, Ripley R, Macdonald D (2005) Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel homerange analyses with least-squares cross validation. J Anim Ecol 74:455–463

    Article  Google Scholar 

  • Henzi SP, Brown LR, Barrett L, Marais AJ (2011) Troop size, habitat use, and diet of chacma baboons (Papio hamadryas ursinus) in commercial pine plantations: implications for management. Int J Primatol 32:1020–1032. doi:10.1007/s10764-011-9519-6

    Google Scholar 

  • Hladik CM (1975) Ecology, diet, and social patterning in old and new world primates. In: Tuttle RH (ed) Socio-ecology and psychology of primates. Mouton, The Hague, pp 3–36

    Google Scholar 

  • Horne JS, Garton EO (2006) Likelihood cross-validation versus least squares cross-validation for choosing the smoothing parameter in kernel home-range analysis. J Wildl Manag 70:641–648

    Article  Google Scholar 

  • Huck M, Davison J, Roper TJ (2008) Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl Biol 14:467–477

    Article  Google Scholar 

  • Hulbert IAR, French J (2001) The accuracy of GPS for wildlife telemetry and habitat mapping. J Appl Ecol 38:869–878

    Article  Google Scholar 

  • Humle T, Colin C, Laurans M, Raballand E (2010) Group release of sanctuary chimpanzees (Pan troglodytes) in the Haut Niger National Park, Guinea, West Africa: ranging patterns and lessons so far. Int J Primatol 32:456–473

    Article  Google Scholar 

  • Jolly A (1985) Evolution of primate behavior. Macmillan, New York, pp 87–114

  • Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91:401–407

    Article  Google Scholar 

  • Juarez CP, Rotundo MA, Berg W, Fernandez-Duque E (2011) Costs and benefits of radio-collaring on the behavior, demography, and conservation of owl monkeys (Aotus azarai) in Formosa, Argentina. Int J Primatol 32:69–82

    Article  Google Scholar 

  • Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchell MS, Gaillard JM, Moorcroft PR (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Phil Trans R Soc B 365:2221–2231

    Article  PubMed  Google Scholar 

  • Kummer H (1968) Social organization of hamadryas baboons. University of Chicago Press, Chicago

    Google Scholar 

  • Laver PN, Kelly MJ (2008) A critical review of home range studies. J Wildl Manag 72:290–298

    Article  Google Scholar 

  • Lewis JS, Rachlow JL, Garton EO, Vierling LA (2007) Effects of habitat on GPS collar performance: using data screening to reduce location error. J Appl Ecol 44:663–671

    Article  Google Scholar 

  • Lichti NI, Swihart RK (2011) Estimating utilization distributions with kernel versus local convex hull methods. J Wildl Manag 75:413–422

    Article  Google Scholar 

  • Markham AC, Altmann J (2008) Remote monitoring of primates using automated GPS technology in open habitats. Am J Primatol 70:1–5

    Article  Google Scholar 

  • Melnick DJ, Pearl MC (1987) Cercopithecines in multimale groups: genetic diversity and population structure. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. The University of Chicago Press, Chicago, pp 121–134

    Google Scholar 

  • Millspaugh JJ, Marzluff JM (2001) Radio-tracking and animal populations: past trends and future needs. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic, San Diego, pp 383–393

  • Moen R, Pastor J, Cohen Y, Schwartz CC (1996) Effects of moose movement and habitat use on GPS collar performance. J Wildl Manag 60:659–668

    Article  Google Scholar 

  • Moen R, Pastor J, Cohen Y (1997) Accuracy of GPS telemetry collar locations with differential correction. J Wildl Manag 61:530–539

    Article  Google Scholar 

  • Odum EP, Kuenzler E (1955) Measurement of territory and home range size in birds. Auk 72:128–137

    Article  Google Scholar 

  • Ott T, van Aarde RJ (2010) Inferred spatial use by elephants is robust to landscape effects on GPS telemetry. S Afr J Wildl Res 40:130–138

    Article  Google Scholar 

  • Powell RA (2000) Animal home ranges and territories and home range estimators. In: Boitani L, Fuller TK (eds) Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, pp 65–110

    Google Scholar 

  • Ren BP, Li M, Long Y, Grüter CC, Wei F (2008) Measuring daily ranging distances of Rhinopithecus bieti via a global positioning system collar at Jinsichang, China: a methodological consideration. Int J Primatol 29:783–794

    Article  Google Scholar 

  • Rodgers AR (2001) Recent telemetry technology. In: Millspaugh JJ, Marzuluff JM (eds) Radio tracking and animal populations. Academic, San Diego, pp 79–121

  • Rodgers AR, Carr AP, Beyer HL, Smith L, Kie JG (2007) HRT: home range tools for ArcGIS. Version 1.1. Ontario Ministry of Natural Resources, Centre for Northern Forest Ecosystem Research, Thunder Bay. http://blue.lakeheadu.ca/hre/. Accessed 5 July 2011

  • Ryan SJ, Knechten CU, Getz WM (2006) Range and habitat selection of African buffalo in South Africa. J Wildl Manag 70:764–776

    Google Scholar 

  • Sain SR, Baggerly KA, Scott DW (1994) Cross-validation of multivariate densities. J Am Stat Assoc 89:807–817

    Article  Google Scholar 

  • Schoener A, Schoener TW (1981) The dynamics of the species–area relation in marine fouling systems: biological correlates of changes in the species–area slope. Am Nat 118:339–360

    Google Scholar 

  • Seaman DE, Powell RA (1996) An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77:2075–2085

    Article  Google Scholar 

  • Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA (1999) Effects of sample size on kernel home range estimates. J Wildl Manag 63:739–747

    Article  Google Scholar 

  • Segal C (2008) Foraging behaviour and diet in chacma baboons in Suikerbosrand Nature Reserve (M.Sc. thesis). University of the Witwatersrand, Johannesburg, p 87

  • Sigrist P, Coppin P, Hermy M (1999) Impact of forest canopy on quality and accuracy of GPS measurements. Int J Remote Sens 20:3595–3610

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London

    Google Scholar 

  • Sprague DS, Kabaya H, Hagihara K (2004) Field testing a global positioning system (GPS) collar on a Japanese monkey: reliability of automatic GPS positioning in a Japanese forest. Primates 45:151–154

    Article  PubMed  Google Scholar 

  • Swihart RK, Slade NA (1985) Influence of sampling interval on estimates of home range size. J Wildl Manag 49:1019–1025

    Article  Google Scholar 

  • Takenoshita Y, Sprague D, Iwasaki N (2005) Factors affecting success rate and accuracy of GPS collar positioning for free-ranging Japanese macaques. Primate Res 21:107–119

    Article  Google Scholar 

  • Volampeno NSM, Masters JC, Downs CT (2011) Home range size in the blue-eyed black lemur (Eulemur flavifrons): a comparison between wet and dry seasons. Mamm Biol 76:157–164

    Article  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall, London

    Google Scholar 

  • Wartmann FM, Purves RS, van Schaik CP (2010) Modelling ranging behavior of female orang-utans: a case study in Tuanan, Central Kalimantan, Indonesia. Primates 51:119–130

    Article  PubMed  Google Scholar 

  • White EC, Dikangadissi JT, Dimoto E, Karesh WB, Kock MD, Abiaga NO, Starkey R, Ukizintambara T, White LJT, Abernethy KA (2010) Home-range use by a large horde of wild Mandrillus sphinx. Int J Primatol 31:627–645

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

  • Worton BJ (1995) Using Monte Carlo simulation to evaluate kernel-based home range estimators. J Wildl Manag 59:794–800

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marlei Martins, Nikki Rust, Megan Petersdorf, Anna Gersten, Annika Andersson, Rebecca Brittain, and Skye Rivett for assistance in the field, and to our neighbors who allowed us to follow the baboons onto their properties. We thank Jennifer Giddy, executive director of Wildcliff, Keith Riggle, Doyce Harmer, Jeanne Altmann and Catherine Markham, Doug and Andrea Taylor, Brian Durham, and David Sprague. We further thank Primates associate editor Warren Brockelman, Rafael Reyna-Hurtado, and one anonymous reviewer for comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula A. Pebsworth.

About this article

Cite this article

Pebsworth, P.A., Morgan, H.R. & Huffman, M.A. Evaluating home range techniques: use of Global Positioning System (GPS) collar data from chacma baboons. Primates 53, 345–355 (2012). https://doi.org/10.1007/s10329-012-0307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-012-0307-5

Keywords

Navigation