Skip to main content

Mechanisms of resistance to Ralstonia solanacearum in tomato rootstocks and integrated management of bacterial wilt using high grafting

This is a preview of subscription content, access via your institution.

References

  1. Anonymous (2019) Present status of vegetable production (in Japanese). Ministry of Agriculture, Forestry and Fisheries. https://www.maff.go.jp/j/council/seisaku/kikaku/bukai/attach/pdf/190424-1.pdf, Cited 22 April 2021

  2. Anonymous (2020) Integrated management of soil-borne diseases of tomato using anaerobic soil disinfestation with new materials. In: Standard operating procedures (in Japanese). National Agriculture and Food Research Organization (NARO). https://www.naro.go.jp/publicity_report/publication/laboratory/naro/sop/137330.html. Cited 22 April 2021

  3. Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman JW Jr (2005) The tomato as a functional food. J Nutr 135:1226–1230

    CAS  Article  Google Scholar 

  4. Deberdt P, Quénéhervé P, Darrasse A, Prior P (1999) Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of the Mi gene in resistance to nematodes and bacterial wilt. Plant Pathol 48:408–414

    Article  Google Scholar 

  5. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, Lorenzo GD (2013) Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci 4:49

    CAS  Article  Google Scholar 

  6. Furusawa A, Uehara T, Ikeda K, Sakai H, Tateishi Y, Sakai M, Nakaho K (2019) Ralstonia solanacearum colonization of tomato roots infected by Meloidogyne incognita. J Phytopathol 167:338–343

    Article  Google Scholar 

  7. Grimault V, Prior P (1993) Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathol 42:589–594

    Article  Google Scholar 

  8. Grimault V, Prior P (1994) Invasiveness of Pseudomonas solanacearum in tomato, eggplant, and pepper: a comparative study. Eur J Plant Pathol 100:259–267

    Article  Google Scholar 

  9. Hanson PM, Licardo O, Hanudin W-F, Chen J-T (1998) Diallel analysis of bacterial wilt resistance in tomato derived from different sources. Plant Dis 82:74–78

    Article  Google Scholar 

  10. Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    CAS  Article  Google Scholar 

  11. Inoue Y, Nakaho K (2014) Sensitive quantitative detection of Ralstonia solanacearum in soil by the most probable number-polymerase chain reaction (MPN-PCR) method. Appl Microbiol Biotechnol 98:4169–4177

    CAS  Article  Google Scholar 

  12. Inoue Y, Nakaho K (2018) Pathogen contamination of soil via tomato plants developing with bacterial wilt in the field (in Japanese with English summary). Annu Rep Kanto-Tosan Plant Prot Soc 65:29–31

    Google Scholar 

  13. Inoue Y, Nakaho K (2019) Case studies of various soil disinfection methods on Ralstonia solanacearum population reduction in soil (in Japanese with English summary). Bull NARO Agric Res Cent Reg 7:1–10

    Google Scholar 

  14. Inoue Y, Kawaguchi A, Nakaho K (2018) Bacterial wilt-resistant tomato rootstock suppresses migration of Ralstonia solanacearum into soil. J Gen Plant Pathol 84:118–123

    Article  Google Scholar 

  15. Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012) Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS ONE 7:e46763

    CAS  Article  Google Scholar 

  16. Jiang GF, Wei Z, Xu J, Chen HL, Zhang Y, She XM, Macho AP, Ding W, Liao BS (2017) Bacterial wilt in China: history, current status, and future perspectives. Front Plant Sci 8:1549

    Article  Google Scholar 

  17. Kajihara H, Ooi Y, Nishimi K (2007) Control of wilt disease of tomato grafted on resistant rootstocks (in Japanese with English summary). Bull Yamaguchi Agric Expt Stn 56:62–70

    Google Scholar 

  18. Kajihara H, Nishida M, Kawara T, Nakaho K (2016) High grafting of green bell peppers (Capsicum annuum) to control bacterial wilt caused by Ralstonia solanacearum during summer–autumn cultivation (in Japanese with English summary). Ann Rep Kansai Plant Prot 58:1–5

    Article  Google Scholar 

  19. Kawasaki T, Tsuda M, Tyree MT, Tabor CA, Brett PW (1997) Vessel length distribution in crop plants: corn, soybean, and tomato (Abstract in Japanese). Jpn J Crop Sci 66(Extra 2):225–226

    Google Scholar 

  20. Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN (2008) Vegetable grafting: history, use, and current technology status in North America. HortScience 43:1664–1669

    Article  Google Scholar 

  21. Lee JM, Bang HJ, Ham HS (1998) Grafting of vegetables. J Jpn Soc Hort Sci 67:1098–1104

    Article  Google Scholar 

  22. Maeda M (2011) Control of bacterial wilt and nematode on tomato using anaerobic soil disinfestation with molasses (in Japanese). Nohkoh-to-Engei (Agricult Horticult) 66:120–124

    Google Scholar 

  23. Miki S, Ikeda K, Kawara T, Nakaho K (2012) Control of bacterial wilt of eggplant by high-grafting on resistant rootstocks (in Japanese). Annu Rep Kanto-Tosan Plant Prot Soc 59:53–54

    Google Scholar 

  24. Momma N, Kobara Y, Uematsu S, Kita N, Shinmura A (2013) Development of biological soil disinfestations in Japan. Appl Microbiol Biotechnol 97:3801–3809

    CAS  Article  Google Scholar 

  25. Monma S, Sakata Y, Matsunaga H (1997) Inheritance and selection efficiency of bacterial wilt resistance in tomato. JARQ 31:195–204

    Google Scholar 

  26. Muramoto Y, Watanabe H, Tanahashi T, Nakaho K (2020) Evaluating the efficacy of anaerobic soil disinfection against soil-borne pathogens of tomato using sugar-containing diatomite and dried molasses (in Japanese with English summary). Ann Rep Kansai Plant Prot 62:31–37

    Article  Google Scholar 

  27. Nakaho K (1997a) Distribution and multiplication of Ralstonia solanacearum (synonym Pseudomonas solanacearum) in tomato plants of resistant rootstock cultivar LS-89 and susceptible Ponderosa. Ann Phytopathol Soc Jpn 63:83–88

    Article  Google Scholar 

  28. Nakaho K (1997b) Distribution and multiplication of Ralstonia solanacearum in stem-inoculated tomato rootstock cultivar LS-89 resistant to bacterial wilt. Ann Phytopathol Soc Jpn 63:341–344

    Article  Google Scholar 

  29. Nakaho K, Allen C (2009) A pectinase-deficient Ralstonia solanacearum strain induces reduced and delayed structural defenses in tomato xylem. J Phytopathol 157:228–234

    CAS  Article  Google Scholar 

  30. Nakaho K, Takaya S, Sumida Y (1996) Conditions that increase latent infection of grafted or non-grafted tomatoes with Pseudomonas solanacearum. Ann Phytopathol Soc Jpn 62:234–239

    Article  Google Scholar 

  31. Nakaho K, Hibino H, Miyagawa H (2000) Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. J Phytopathol 148:181–190

    Article  Google Scholar 

  32. Nakaho K, Inoue H, Takayama T, Miyagawa H (2004) Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J Gen Plant Pathol 70:115–119

    Article  Google Scholar 

  33. Nakaho K, Mitsuhara I, Ohashi Y (2007) Control with yeast extract (Agrivo EX) of bacterial wilt of tomato caused by Ralstonia solanacearum (Abstract in Japanese). Jpn J Phytopathol 73:276

    Google Scholar 

  34. Nakaho K, Notsu A, Maeda M, Kajihara H (2012) Integrated management of bacterial wilt of tomato using high grafting (in Japanese). In: Nougyogijyututaikei (Agric Tech Sys) Dojyosehi 5–1 Noubunkyo, Tokyo, pp 106-12–106-30

  35. Nakaho K, Seo S, Ookawa K, Inoue Y, Ando S, Kanayama Y, Miyashita S, Takahashi H (2017) Involvement of a vascular hypersensitive response in quantitative resistance to Ralstonia solanacearum on tomato rootstock cultivar LS-89. Plant Pathol 66:150–158

    CAS  Article  Google Scholar 

  36. Nakaho K, Maeda M, Muramoto Y, Inoue Y, Uehara T (2019) Anaerobic soil disinfestation with sugar-containing diatomite (Abstract). In: Proceedings of MBAO: fumigation and alternatives for production, storage and trade conference, November 11–13, 2019. San Diego, CA, USA, p 58

  37. Seo S, Nakaho K (2021) Induction of plant disease resistance by amino acids (in Japanese with English summary). Regul Plant Growth Dev 56 (in press)

  38. Seo S, Nakaho K, Hong SW, Takahashi H, Shigemori H, Mitsuhara I (2016) l-Histidine induces resistance in plants to the bacterial pathogen Ralstonia solanacearum partially through the activation of ethylene signaling. Plant Cell Physiol 57:1932–1942

    CAS  Article  Google Scholar 

  39. Shibuya N, Minami E (2001) Oligosaccharide signalling for defense responses in plant. Physiol Mol Plant Pathol 59:223–233

    CAS  Article  Google Scholar 

  40. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley N (1996) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol Plant Microbe Interact 9:826–836

    CAS  Article  Google Scholar 

  41. Tjamos E, Gamliel A, Tsitsigiannis D, Gkizi D (eds) (2020) Proceedings of the IX international symposium on soil and substrate disinfestation. International Society for Horticultural Science (ISHS), Leuven, Belgium

  42. Tyree MT, Zimmerman MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, New York

    Book  Google Scholar 

  43. Uehara T, Nakaho K (2018) Effects of high grafting on tomato plants infected by Meloidogyne incognita and Ralstonia solanacearum. J Phytopathol 166:53–58

    CAS  Article  Google Scholar 

  44. Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251

    CAS  Article  Google Scholar 

  45. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904

    CAS  Article  Google Scholar 

  46. Yamakawa K (1978) Cultivar resistance to Pseudomonas solanacearum in tomato and eggplant (in Japanese). Shokubutsu Boeki (Plant Prot) 32:197–200

    Google Scholar 

Download references

Acknowledgements

I am grateful to Drs. Hideki Takahashi, Caitilyn Allen, Akira Ohuchi, Hiroyuki Hibino, Shigeo Takaya, Yoshinori Sumida, Ichiro Mitsuhara, Shigemi Seo, Takeaki Ishihara, Hiroshi Kajihara, Masayuki Maeda, Ayumi Notsu, Tomoko Kawara, Yasuhiro Inoue, Taketo Uehara, Masato Kawabe, Yasunori Muramoto, Hideki Watanabe, Kentaro Ikeda, Shizue Miki, and Akiko Furusawa for their valuable suggestions, encouragement, and continuous support for my research. I sincerely appreciate the great support and cooperation from many other collaborators at NARO, Prefectural Agricultural Experiment Stations and Extension Centers, and companies, and express my sincere gratitude here. I also express my sincere thanks to the late Drs. Yoshio Ehara and Teruyoshi Hashiba for their guidance and consistent encouragement, and Dr. Nobuhiro Kita for nominating me as a PSJ Fellow candidate.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Nakaho.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakaho, K. Mechanisms of resistance to Ralstonia solanacearum in tomato rootstocks and integrated management of bacterial wilt using high grafting. J Gen Plant Pathol 87, 398–402 (2021). https://doi.org/10.1007/s10327-021-01033-6

Download citation