Skip to main content
Log in

Exploring the origin of crop pathogens: host-specific toxin-producing pathogens as a case study

  • Presidential Address
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738

    Article  CAS  Google Scholar 

  • Akamatsu H, Taga M, Kodama M, Johnson R, Otani H, Kohmoto K (1999) Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins. Curr Genet 35:647–656

    Article  CAS  Google Scholar 

  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97:4961–4966

    Article  CAS  Google Scholar 

  • Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Curr Genet 33:311–319

    Article  CAS  Google Scholar 

  • Dewey RE, Siedow JN, Timothy DH, Levings CS III (1988) A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science 239:293–295

    Article  CAS  Google Scholar 

  • Han Y, Liu X, Benny U, Kistler HC, VanEtten HD (2001) Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J 25:305–314

    Article  CAS  Google Scholar 

  • Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii K (2002) Remembrance on the Japanese pear “Nijisseiki” and breeder Mr. Kakunosuke Matsudo (in Japanese). Shokubutsu-boeki [Plant Prot] 56(1):41–43

    Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  Google Scholar 

  • Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72

    Article  CAS  Google Scholar 

  • Li Y, Aldwinckle HS, Sutton T, Tsuge T, Kang G, Cong P-H, Cheng Z-M (2013) Interactions of apple and the Alternaria alternata apple pathotype. Crit Rev Plant Sci 32:141–150

    Article  Google Scholar 

  • Lorang JM, Carkaci-Salli N, Wolpert TJ (2004) Identification and characterization of victorin sensitivity in Arabidopsis thaliana. Mol Plant-Microbe Interact 17:577–582

    Article  CAS  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104:14861–14866

    Article  CAS  Google Scholar 

  • Lorang JM, Hagerty CH, Lee R, McClean PE, Wolpert TJ (2018) Genetic analysis of victorin sensitivity and identification of a causal nucleotide-binding site leucine-rich repeat gene in Phaseolus vulgaris. Mol Plant Microbe Interact 31:1069–1074

    Article  CAS  Google Scholar 

  • Meehan F, Murphy HC (1947) Differential phytotoxicity of metabolic by-products of Helminthosporium victoriae. Science 106:270–271

    Article  CAS  Google Scholar 

  • Miao VP, Covert SF, VanEtten HD (1991) A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254:1773–1776

    Article  CAS  Google Scholar 

  • Nakashima T, Ueno T, Fukami H, Taga T, Masuda H, Osaki K, Otani H, Kohmoto K, Nishimura S (1985) Isolation and structures of AK-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria alternata Japanese pear pathotype. Agric Biol Chem 49:807–815

    CAS  Google Scholar 

  • Nishikawa J, Nakashima C (2019) Morphological and molecular characterization of the strawberry black leaf spot pathogen referred to as the strawberry pathotype of Alternaria alternata. Mycoscience 60:1–9

    Article  Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116

    Article  CAS  Google Scholar 

  • Ohtani K, Yamamoto H, Akimitsu K (2002) Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proc Natl Acad Sci USA 99:2439–2444

    Article  CAS  Google Scholar 

  • Sekiguchi A (1976) Studies on the Alternaria leaf spot disease of apple caused by Alternaria mali Roberts (in Japanese with English summary). Bull Nagano Hort Exp Stn 12:1–64

    Google Scholar 

  • Sekiguchi A, Ueno T, Fukami H, Hayashi Y, Nakashima T, Nishimura S (1974) Pathogenicity of Alternaria mali Rob. and toxicity of AM toxin to various plants (abstract in Japanese). Jpn J Phytopathol 40:149

    Article  Google Scholar 

  • Tanaka S (1933) Studies on black spot disease of the Japanese pear (Pyrus serotina Rehd.). Mem Coll Agric Kyoto Univ 28:1–31

    Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  Google Scholar 

  • Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M, Otani H (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66

    Article  CAS  Google Scholar 

  • Tsuge T, Harimoto Y, Hanada K, Akagi Y, Kodama M, Akimitsu K, Yamamoto M (2016) Evolution of pathogenicity controlled by small, dispensable chromosomes in Alternaria alternata pathogens. Physiol Mol Plant Pathol 95:27–31

    Article  CAS  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    Article  CAS  Google Scholar 

  • Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PW (2015) Alternaria section Alternaria: Species, formae speciales or pathotypes? Study Mycol 82:1–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I express my deepest gratitude to all my colleagues and students for their enthusiastic collaboration and cooperation with this research. Most of this work was supported by Grants-in-Aid for research projects from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuge.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an abstract of the Presidential Address at the 2019 Annual Meeting of the Phytopathological Society of Japan in Tsukuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuge, T. Exploring the origin of crop pathogens: host-specific toxin-producing pathogens as a case study. J Gen Plant Pathol 85, 458–462 (2019). https://doi.org/10.1007/s10327-019-00874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-019-00874-6

Navigation