Skip to main content

Advertisement

Log in

Pseudomonas syringae pv. alliifistulosi pv. nov., the causal agent of bacterial leaf spot of onions

  • Bacterial and Phytoplasma Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

In 1972, bacterial leaf spot of onion (BLSO) was first recorded in Japan by Goto. The pathogen was considered as a pathovar of Pseudomonas syringae specifically causing disease on onion and Welsh onion, but it has not been taxonomically investigated in detail. In 2012 and 2014, a disease suspected as BLSO re-emerged on onion in Shizuoka and Hyogo Prefectures, Japan, respectively. A pathogenic bacterium isolated from the infected onions was thought to be the BLSO agent after preliminary examinations. Strains isolated from BLSO in 1969, 1986, 1987, 2012 and 2014 were characterized and compared with the causal agent of bacterial blight of leek (P. syringae pv. porri), which causes similar symptoms on Allium plants. The result of rep-PCR distinguished the BLSO agent from P. syringae pv. porri. Multilocus sequence analysis on housekeeping genes and hrp genes encoding the type-III secretion system revealed that the strains of the BLSO agent clustered independently of P. syringae pv. porri. The BLSO agent and P. syringae pv. porri also differed in utilization of erythritol, dl-homoserine, glutaric acid and other bacteriological characteristics and caused different reactions on onion, Welsh onions, chives, shallot, rakkyo, leek, garlic and Chinese chive. Thus, the BLSO agent clearly differs from P. syringae pv. porri and is considered to be a new pathovar of P. syringae. The name P. syringae pv. alliifistulosi is proposed with pathotype strain ICMP3414.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology, vol 1. Wiley, New York

    Google Scholar 

  • Barta TM, Kinscherf TG, Uchytil TF, Willis DK (1993) DNA sequence and transcriptional analysis of the tblA gene required for tabtoxin biosynthesis by Pseudomonas syringae. Appl Environ Microbiol 59:458–466

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bereswill S, Bugert P, Völksch B, Ullrich M, Bender CL, Geider K (1994) Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol 60:2924–2930

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A (2012) The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One 7:e36709. https://doi.org/10.1371/journal.pone.0036709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fahy PC, Persley GJ (1983) Plant bacterial diseases: a diagnostic guide. Academic Press, Sidney, pp 363–365

    Google Scholar 

  • Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478

    Article  PubMed  CAS  Google Scholar 

  • Gitaitis R, Mullis S, Lewis K, Langston D, Watson AK, Sanders H, Torrance R, Jones JB, Nischwitz C (2012) First report of a new disease of onion in Georgia caused by a nonfluorescent Pseudomonas species. Plant Dis 96:285

    Article  PubMed  Google Scholar 

  • Goto M (1972) Bacterial leaf spot of onions in Japan. Plant Dis Rep 56:490–493

    Google Scholar 

  • Gross DC, DeVay JE (1977) Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology 67:475–483

    Article  Google Scholar 

  • Hale CN (1975) Bacteriosis of leek in New Zealand. NZ J Agric Res 18:251–254

    Article  Google Scholar 

  • Hiraishi A (1995) Genetic analysis and phylogeny based on 16S ribosomal RNA through polymerase chain reaction (in Japanese). Bull J Soc Microbial Ecol 10:31–42

    Article  Google Scholar 

  • Iacobellis NS, Caponero A, Evidente A (1998) Characterization of Pseudomonas syringae ssp. savastanoi strains isolated from ash. Plant Pathol 47:73–83

    Article  CAS  Google Scholar 

  • Inoue Y, Takikawa Y (2006) The hrpZ and hrpA genes are variable, and useful for grouping Pseudomonas syringae bacteria. J Gen Plant Pathol 72:26–33

    Article  CAS  Google Scholar 

  • Janse JD (1982) Pseudomonas syringae subsp. savastanoi (ex Smith) subsp. nov., nom. rev., the bacterium causing excrescences on Oleaceae and Neriurn oleander L. Int J Syst Bacteriol 32:166–169

    Article  Google Scholar 

  • Koike ST, Barak JD, Henderson DM, Gilbertson RL (1999) Bacterial blight of leek: a new disease in California caused by Pseudomonas syringae. Plant Dis 83:165–170

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kusumoto S, Aeny TN, Mujimu S, Ginting C, Tsuge T, Tsuyumu S, Takikawa Y (2004) Occurrence of blood disease of banana in Sumatra, Indonesia. J Gen Plant Pathol 70:45–49

    Article  Google Scholar 

  • Lelliott RA (1952) A new bacterial disease of leeks. Plant Pathol 1:84–85

    Article  Google Scholar 

  • Lelliott RA, Billing E, Hayward AC (1966) A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29:470–489

    Article  PubMed  CAS  Google Scholar 

  • Maeda Y, Shinohara H, Kiba A, Ohnishi K, Furuya N, Kawamura Y, Ezaki T, Vandamme P, Tsushima S, Hikichi Y (2006) Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int J Syst Evol Microbiol 56:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Moloto VM, Goszczynska T, du Toit LJ, Coutinho TA (2017) A new pathovar of Pseudomonas syringae, pathovar allii, isolated from onion plants exhibiting symptoms of blight. Eur J Plant Pathol 147:591–603

    Article  Google Scholar 

  • Moretti C, Vinatzer BA, Onofri A, Valentini F, Buonaurio R (2017) Genetic and phenotypic diversity of Mediterranean populations of the olive knot pathogen, Pseudomonas savastanoi pv. savastanoi. Plant Pathol 66:595–605

    Article  CAS  Google Scholar 

  • Myung IS, Joa JH, Shim HS (2011) Bacterial leaf spot of onion caused by Pseudomonas syringae pv. porri, a new disease in Korea. Plant Dis 95:1311

    Article  PubMed  Google Scholar 

  • Nishiguchi S (2013) Control measures for the onion diseases in Awaji Island (in Japanese). Nouyakusyunju 90:9–14

    Google Scholar 

  • Nishiyama K (1978) The tentative plan of simple identification method of plant pathogenic bacteria (in Japanese). Plant Prot (Shokubutsu Boeki) 32:283–288

    Google Scholar 

  • Nishiyama K, Ezuka A (1978) Species of bacteria producing coronatine, a new physiologically active substance. Ann Phytopathol Soc Jpn 44:179–183

    Article  Google Scholar 

  • Noble DH, Cother EJ, Hailstones DL, Flack M, Oxspring L, Hall B (2006) Characterisation of Pseudomonas syringae strains associated with a leaf disease of leek in Australia. Eur J Plant Pathol 115:419–430

    Article  Google Scholar 

  • Palmer DA, Bender CL (1993) Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59:1619–1626

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rademaker JLW, Louws FJ, de Bruijn FJ (1998) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Akkermans ADL, van Elsas JD, de Bruijin FL (eds) Molecular microbial ecology manual, suppl 3. Kluwer, Dordrecht, pp 1–27

    Google Scholar 

  • Roach R, McTaggart A, Gambley C, Harper S, Carey D, Duff JD (2015) Pseudomonas syringae pv. porri: a new pathogen of Australian onions. Acta Hortic 1105:149–154

    Article  Google Scholar 

  • Rombouts S, Van Vaerenbergh J, Volckaert A, Baeyen S, De Langhe T, Declercq B, Lavigne R, Maes M (2016) Isolation and characterization of Pseudomonas syringae pv. porri from Leek in Flanders. Eur J Plant Pathol 144:185–198

    Article  CAS  Google Scholar 

  • Ryu E (1937) A simple method of staining bacterial flagella. Kitasato Arch Exp Med 14:218–219

    Google Scholar 

  • Ryu E (1940) A simple method of differentiation between gram-positive and gram-negative organism without staining. Kitasato Arch Exp Med 17:58–63

    Google Scholar 

  • Samson R, Poutier F, Rat B (1981) Une nouvelle maladie du poireau: la graisse bactérienne à Pseudomonas syringae. PHM Rev Hortic 219:20–23

    Google Scholar 

  • Samson R, Shafik H, Benjama A, Gardan L (1998) Description of the bacterium causing blight of leek as Pseudomonas syringae pv. porri (pv. nov.). Phytopathology 88:844–850

    Article  PubMed  CAS  Google Scholar 

  • Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:1999–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato M, Watanabe K, Yazawa M, Takikawa Y, Nishiyama K (1997) Detection of new ethylene-producing bacteria, Pseudomonas syringae pvs. cannabina and sesami, by PCR amplification of genes for the ethylene-forming enzyme. Phytopathology 87:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Schaad NW, Cheong SS, Tamaki S, Hatziloukas E, Panopoulos NJ (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243–248

    Article  CAS  Google Scholar 

  • Sinden SL, DeVay JE, Backman PA (1971) Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees. Physiol Plant Pathol 1:199–213

    Article  CAS  Google Scholar 

  • Society of American Bacteriologists (1957) Manual of microbiological methods. McGraw-Hill, New York, p 54

    Google Scholar 

  • Sorensen KN, Kim KH, Takemoto JY (1998) PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Appl Environ Microbiol 64:226–230

    PubMed  PubMed Central  CAS  Google Scholar 

  • Staskawicz BJ, Panopoulos NJ (1979) A rapid and sensitive microbiological assay for phaseolotoxin. Phytopathology 69:663–666

    Article  CAS  Google Scholar 

  • Suzuki A, Togawa M, Ohta K, Takikawa Y (2003) Occurrence of white top of pea caused by a new strain of Pseudomonas syringae pv. pisi. Plant Dis 87:1404–1410

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Ogiso H, Fujinaga M, Ishiyama Y, Inoue Y, Shirakawa T, Takikawa Y (2013) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J Gen Plant Pathol 79:260–269

    Article  CAS  Google Scholar 

  • Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidiae nov.: the causal bacterium of canker of kiwifruit in Japan. Ann Phytopathol Soc Jpn 55:437–444

    Article  Google Scholar 

  • Tegli S, Cerboneschi M, Libelli IM, Santilli E (2010) Development of a versatile tool for the simultaneous differential detection of Pseudomonas savastanoi pathovars by end point and real-time PCR. BMC Microbiol 10:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuji M, Ohta K, Tanaka K, Takikawa Y (2017) Comparison among Japanese isolates of Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease. J Gen Plant Pathol 83:152–161

    Article  CAS  Google Scholar 

  • van Overbeek LS, Nijhuis EHM, Koenraadt H, Visser J, van Kruistum G (2010) The role of crop waste and soil in Pseudomonas syringae pathovar porri infection of leek (Allium porrum). Appl Soil Ecol 46:457–463

    Article  Google Scholar 

  • Yamamoto S, Bouvet PJM, Harayama S (1999) Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Liu H, Mohr TJ, Jenrette J, Chiodini R, Zaccardelli M, Setubal JC, Vinatzer BA (2008) Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Appl Environ Microbiol 74:3171–3181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Shinji Nishiguchi (Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Awaji Agricultural Technology Institute) for kindly supplying samples, Mr. Yoshinobu Ichikawa (Technical Support Division of Faculty of Agriculture, Shizuoka University) for technical assistance in electron microscopy, and Mr. Hajime Haga (Shizuoka Plant Protection Office) for help with collecting samples. We also thank former students of Shizuoka University, Mr. Toyokazu Kubota and Ms. Hanae Miyazawa, for their assistance with many experiments at our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizue Tsuji.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1038 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, M., Takikawa, Y. Pseudomonas syringae pv. alliifistulosi pv. nov., the causal agent of bacterial leaf spot of onions. J Gen Plant Pathol 84, 343–358 (2018). https://doi.org/10.1007/s10327-018-0791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-018-0791-6

Keywords

Navigation