Journal of General Plant Pathology

, Volume 84, Issue 3, pp 169–175 | Cite as

A recombinant flagellin fragment, which includes the epitopes flg22 and flgII-28, provides a useful tool to study flagellin-triggered immunity

  • Serena Ciarroni
  • Christopher R. Clarke
  • Haijie Liu
  • Noam Eckshtain-Levi
  • Angelo Mazzaglia
  • Giorgio M. Balestra
  • Boris A. Vinatzer
Host Responses
  • 74 Downloads

Abstract

Plants and animals independently evolved the ability to recognize flagellin (also called FliC), the building block of the bacterial flagellum, as part of their innate immune response. While animals recognize a relatively large region of FliC, most plants recognize one or two short epitopes of FliC: flg22 and flgII-28. However, since most research in plants has focused on flg22 and flgII-28 and not the actual FliC protein, the importance of any FliC region beyond the two epitopes in plant immunity is poorly understood. Here we report cloning, overexpression, and purification of a Pseudomonas syringae FliC fragment from amino acid 1 to 143, which includes both FliC epitopes and the adjacent alpha helices. Exposing Arabidopsis thaliana leaves to FliC1–143 did not reveal any additional FliC recognition capabilities beyond flg22. However, while the kiwifruit species Actinidia arguta did not respond to either flg22 or flgII-28, treatment of A. arguta leaves with FliC1–143 triggered a significant reactive oxygen response, indicating recognition. This result suggests that in some plant species, recognition of FliC requires regions of FliC beyond the two well-known epitopes and that FliC1–143 represents a useful tool in the study of plant immunity.

Keywords

Flagellin FliC Kiwifruit Reactive oxygen species PAMP 

Notes

Acknowledgements

This work was supported by NSF IOS-0746501 and IOS-1354215 to BAV. BAV was also funded in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, US Department of Agriculture. CRC was supported by a National Institute of Food and Agriculture Postdoctoral Research Fellowship (2015-67012-22821). NE-L was supported by BARD, the United States–Israel Binational Agricultural Research and Development Fund, Vadia-BARD Postdoctoral Fellowship Award No. FI-538-15. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. Almeida NF, Yan S, Lindeberg M, Studholme DJ, Schneider DJ, Condon B, Liu H, Viana CJ, Warren A, Evans C, Kemen E, MacLean D, Angot A, Martin GB, Jones JD, Collmer A, Setubal JC, Vinatzer BA (2008) A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 22:52–62CrossRefGoogle Scholar
  2. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406CrossRefPubMedGoogle Scholar
  3. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D’Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chinchilla D, Boller T, Robatzek S (2007) Flagellin signalling in plant immunity. In: Lambris JD (ed) Current topics in innate immunity. Springer, New York, pp 358–371CrossRefGoogle Scholar
  8. Clarke CR, Vinatzer BA (2017) Characterizing the immune-eliciting activity of putative microbe-associated molecular patterns in tomato. In: Shan L, He P (eds) Plant pattern recognition receptors: methods and protocols. Springer, New York, pp 249–261CrossRefGoogle Scholar
  9. Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:847–860CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cunty A, Poliakoff F, Rivoal C, Cesbron S, Fischer-Le Saux M, Lemaire C, Jacques MA, Manceau C, Vanneste JL (2015) Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. Plant Pathol 64:582–596CrossRefGoogle Scholar
  11. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276CrossRefPubMedGoogle Scholar
  12. Gómez-Gómez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011CrossRefPubMedGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z, O’Doherty IM, Baccile JA, Hoki JS, Viox EG, Clarke CR, Vinatzer BA, Schroeder FC, Martin GB (2016) Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat Plants 2:16128CrossRefPubMedGoogle Scholar
  15. Katagiri F, Tsuda K (2010) Understanding the plant immune system. Mol Plant Microbe Interact 23:1531–1536CrossRefPubMedGoogle Scholar
  16. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefPubMedPubMedCentralGoogle Scholar
  17. Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22CrossRefPubMedGoogle Scholar
  18. Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938CrossRefPubMedGoogle Scholar
  19. Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72–80CrossRefPubMedGoogle Scholar
  20. Vinatzer BA, Monteil CL, Clarke CR (2014) Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu Rev Phytopathol 52:19–43CrossRefPubMedGoogle Scholar
  21. Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80CrossRefPubMedGoogle Scholar
  22. Yoon S-i, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA (2012) Structural basis of TLR5-flagellin recognition and signaling. Science 335:859–864CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Serena Ciarroni
    • 1
  • Christopher R. Clarke
    • 2
    • 3
  • Haijie Liu
    • 2
  • Noam Eckshtain-Levi
    • 2
  • Angelo Mazzaglia
    • 1
  • Giorgio M. Balestra
    • 1
  • Boris A. Vinatzer
    • 2
  1. 1.Department of Agriculture and Forestry Science (DAFNE)University of TusciaViterboItaly
  2. 2.Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgUSA
  3. 3.Agricultural Research ServiceUSDABeltsvilleUSA

Personalised recommendations