Genetic diversity of Phytophthora nicotianae reveals pathogen transmission mode in Japan

Abstract

Phytophthora nicotianae is an important soil-borne pathogen in tropical, subtropical and temperate regions. To clarify the genetic diversity of P. nicotianae and to understand its mode of transmission in Japan, we developed six new microsatellites markers, consisting of six loci and 39 alleles. In a phylogenetic analysis, 138 isolates, including 125 from Japan and 13 from overseas, were shown to differ, even though some were collected from the same host and location, suggesting that there is no geographic or host plant clustering. Population structure analysis also revealed a highly admixed population of P. nicotianae in Japan. Molecular analysis suggested high variance between individuals but no significant differences between populations. Both A1 and A2 mating types were present in the same population, which could be due to high levels of variance between individuals in the population. The absence of geographical structure between populations also suggests that the pathogen is able to migrate from one population to another. We propose that this phenomenon could result from human activities related to the transport of plant and associated agricultural materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aguayo J, Adams GC, Halkett F, Catal M, Husson C, Nagy ZÁ, Hansen EM, Marçais B, Frey P (2010) Strong genetic differentiation between North American and European populations of Phytophthora alni subsp. uniformis. Phytopathology 103:190–199

    Google Scholar 

  2. Asuyama H (1934) New diseases and pathogens reported in the year of 1934 on our cultivated plants in Japan (in Japanese). Jpn J Phytopathol 4:191–197

    Google Scholar 

  3. Bebber DP, Holmes T, Gurr SJ (2014) The global spread of crop pests and pathogens. Global Ecol Biogeogr 23:1398–1407

    Google Scholar 

  4. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Biasi A, Martin FN, Cacciola SO, di San Lio GM, Grünwald NJ, Schena L (2016) Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers. Phytopathology 106:1006–1014

    PubMed  Google Scholar 

  6. Bonnet Ph, Lacourt I, Venard P, Ricci P (1994) Diversity in pathogenicity to tobacco and in elicitin production and isolates of Phytophthora parasitica. J Phytopathol 141:25–37

    Google Scholar 

  7. Bruberg MB, Elameen A, Le VH, Nærstad R, Hermansen A, Lehtinen A, Hannukkala A, Nielsen B, Hansen J, Andersson B, Yuen J (2011) Genetic analysis of Phytophthora infestans populations in the Nordic European countries reveals high genetic variability. Fungal Biol 115:335–342

    Google Scholar 

  8. Charlesworth B (2015) What use is population genetics? Genetics 200:667–669

    PubMed  PubMed Central  Google Scholar 

  9. Cline ET, Farr DF, Rossman AY (2008) A synopsis of Phytophthora with accurate scientific names, host range, and geographic distribution. Plant Health Prog. https://doi.org/10.1094/PHP-2008-0318-01-RS

    Article  Google Scholar 

  10. Colas V, Lacourt I, Ricci P, Vanlerberghe-Masutti F, Poupet A, Panabières F (1998) Diversity of virulence in Phytophthora parasitica on tobacco, as reflected by nuclear RFLPs. Phytopathology 88:205–212

    CAS  PubMed  Google Scholar 

  11. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  12. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Horie H (2007) Studies on diagnosis, ecology and control of plant diseases on various horticultural crops in Japan (in Japanese). Jpn J Phytopathol 73:138–140

    Google Scholar 

  15. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  16. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  Google Scholar 

  17. Kanto T, Uematsu S, Aino M (2007) Phytophthora blight of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch.) caused by Phytophthora nicotianae van Breda de Haan (1896) (in Japanese with English summary). Jpn J Phytopathol 73:112–113

    Google Scholar 

  18. Lees AK, Wattier R, Shaw DS, Sullivan L, Williams NA, Cooke DEL (2006) Novel microsatellite markers for the analysis of Phytophthora infestans populations. Plant Pathol 55:311–319

    CAS  Google Scholar 

  19. Ma L, Ji YJ, Zhang DX (2015) Statistical measures of genetic differentiation of populations: rationales, history and current states. Curr Zool 61:886–897

    Google Scholar 

  20. Mammella MA, Martin FN, Cacciola SO, Coffey MD, Faedda R, Schena L (2013) Analyses of the population structure in a global collection of Phytophthora nicotianae isolates inferred from mitochondrial and nuclear DNA sequences. Phytopathology 103:610–622

    CAS  PubMed  Google Scholar 

  21. Matsuzaki M (1988) Distribution of mating types of Phytophthora nicotianae var. parasitica, causal fungus of Phytophthora rot of strawberry, in Saga Prefecture (in Japanese with English summary). Ann Phytopathol Soc Jpn 54:544–547

    Google Scholar 

  22. Meitz J, Linde C, Thompson A, Langenhoven SD, McLeod A (2010) Phytophthora capsici on vegetable hosts in South Africa: distribution, host range and genetic diversity. Australas Plant Pathol 39:431–439

    Google Scholar 

  23. Montarry J, Andrividon D, Glais I, Corbiere R, Mialdea G, Delmotte F (2010) Microsatellite markers reveal two admixed genetic groups and an ongoing displacement within the French population of the invasive plant pathogen Phytophthora infestans. Mol Ecol 19:1965–1977

    CAS  PubMed  Google Scholar 

  24. Morita Y, Tojo M (2007) Modification of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Dis 91:1591–1599

    CAS  PubMed  Google Scholar 

  25. Nakamura H, Matsuzaki M (1994) Occurrence of Phytophthora rot of limonium caused by Phytophthora nicotianae in Saga Prefecture (Abstract in Japanese). Ann Phytopathol Soc Jpn 60:737

    Google Scholar 

  26. Nath VS, Senthil M, Hegde VM, Jeeva ML, Misra RS, Veena SS, Raj M (2013) Genetic diversity of Phytophthora colocasiae isolates in India based on AFLP analysis. 3 Biotech 3:297–305

    PubMed  Google Scholar 

  27. Panabières F, Ali GS, Allagui MB, Dalio RJD, Gudmestad NC, Kuhn ML, Guha Roy S, Schena L, Zampounis A (2016) Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathol Mediterr 55:20–40

    Google Scholar 

  28. Parkunan V, Johnson CS, Bowman BC (2010) Population structure, mating type, and mefenoxam sensitivity of Phytophthora nicotianae in Virginia tobacco fields. Plant Dis 94:1361–1365

    CAS  PubMed  Google Scholar 

  29. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Google Scholar 

  30. Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 7:574–578

    Google Scholar 

  32. Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11:1002–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Google Scholar 

  34. San Millán RM, Martínez-Ballesteros I, Rementeria A, Garaizar J, Bikandi J (2013) Online exercise for the design and simulation of PCR and PCR-RFLP experiments. BMC Res Notes 6:513. https://doi.org/10.1186/1756-0500-6-513

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Schoebel CN, Stewart J, Gruenwald NJ, Rigling D, Prospero S (2014) Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLOS One 9:e85368

    PubMed  PubMed Central  Google Scholar 

  36. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologist: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    PubMed  Google Scholar 

  37. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    CAS  PubMed  Google Scholar 

  38. Suzui T, Makino T, Ogoshi A (1980) Phytophthora rot of strawberry caused by Phytophthora nicotianae var. parasitica in Shizuoka. Ann Phytopathol Soc Jpn 46:169–178

    Google Scholar 

  39. Takeuchi J, Horie H (2000) First report of Phytophthora rot of garden pea and Albuca nelsonii in Japan (in Japanese with English summary). Annu Rept Kanto-Tosan Plant Prot Soc 47:45–48

    Google Scholar 

  40. Takeuchi T, Suzuki T (2010) Phytophthora blight (Phytophthora nicotianae) on hydroponically grown Welsh onion (Allium fistulosum L.) and controlling damage with the nutrient solution (in Japanese with English summary). Bull Chiba Agric Res Cent 2:1–6

    Google Scholar 

  41. Takeuchi J, Horie H, Eimori K (2004) First report of Phytophthora rot of New Zealand spinach in Japan (in Japanese with English summary). Annu Rept Kanto-Tosan Plant Prot Soc 51:55–57

    Google Scholar 

  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tashiro N, Uematsu S, Matsuzaki M, Ide Y, Etoh T (2002) Phytophthora palmivora, P. citrophthora and P. nicotianae as causal agents of citrus brown rot (Abstract in Japanese). Jpn J Phytopathol 68:189

    Google Scholar 

  44. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B 278:2–8

    PubMed  Google Scholar 

  45. Watanabe H, Taguchi Y, Hyakumachi M, Kageyama K (2007) Pythium and Phytophthora species associated with root and stem rots of kalanchoe. J Gen Plant Pathol 73:81–88

    Google Scholar 

  46. Wu M, Li B, Liu P, Weng Q, Zhan J, Chen Q (2017) Genetic analysis of Phytophthora sojae populations in Fujian, China. Plant Pathol 66:1182–1190

    CAS  Google Scholar 

  47. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    CAS  Google Scholar 

  48. Yokota S, Oomori T, Nao M, Watanabe T, Kitamoto H (2013) Involvement of Phytophthora rot caused by Phytophthora nicotianae in growth failure of asparagus (Asparagus officinalis L.) in replanted fields in Ehime Prefecture. Soil Microorg 67:77–82

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Seiji Uematsu, Dr. Hideki Watanabe, Mr. Minoru Inada, Dr. Yuji Kajitani for providing P. nicotianae isolates used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Auliana Afandi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 KB)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afandi, A., Hieno, A., Wibowo, A. et al. Genetic diversity of Phytophthora nicotianae reveals pathogen transmission mode in Japan. J Gen Plant Pathol 85, 189–200 (2019). https://doi.org/10.1007/s10327-018-00836-4

Download citation

Keywords

  • Diversity
  • Microsatellite
  • Phytophthora nicotianae
  • Population genetics
  • Population structure