Skip to main content

Molecular markers for genotyping anastomosis groups and understanding the population biology of Rhizoctonia species

Abstract

Soil-borne Rhizoctonia fungi cause serious diseases in several plant species. For the classification of these fungi, the number of nuclei in a hyphal cell and the anastomosis reaction are important criteria. Although Rhizoctonia spp. has a wide host range, the causal agents have been reported to be selective for host plant families or species and lead to severe disease. Reports of new diseases, particularly in new host plants, and severe damage in agricultural fields incurred by subdivided or newly found groups of Ceratobasidium and Waitea circinata (a varied teleomorph of Rhizoctonia) have been increasing in recent years. The food production environment is altering because of climate change, introduction of potential new host plants, and heavy use of chemicals that reduce microbial diversity. These changes favor the occurrence of new diseases incurred by undefined anastomosis groups (AGs) or subgroups of Rhizoctonia spp. On the basis of the phylogenetic relationships of AGs and subgroups in Rhizoctonia spp., molecular markers for discriminating the groups of the Rhizoctonia species complex have been developed. The application of genetic markers, in the form of microsatellites or simple sequence repeats (SSR), has become increasingly important in fungal genetics. The analyses of population genetics for Rhizoctonia spp. using SSR markers elucidated the modes of sexual and asexual reproduction, phylogeographical distributions, and global migrations associated with adaptation to agroecosystems.

This is a preview of subscription content, access via your institution.

References

  1. Ahvenniemi P, Wolf M, Lehtonen MJ, Wilson P, German-Kinnari M, Valkonen JPT (2009) Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J Mol Evol 69:150–163

    CAS  PubMed  Article  Google Scholar 

  2. Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  3. Bernardes de Assis J, Peyer P, Rush MC, Zala M, McDonald BA, Ceresini PC (2008) Divergence between sympatric rice- and soybean-infecting populations of Rhizoctonia solani anastomosis group-1 IA. Phytopathology 98:1326–1333

    PubMed  Article  Google Scholar 

  4. Bernardes-de-Assis J, Storari M, Zala M, Wang W, Jiang D, ShiDong L, Jin M, McDonald BA, Ceresini PC (2009) Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology 99:1090–1099

    PubMed  Article  Google Scholar 

  5. Boysen M, Borja M, del Moral C, Salazar O, Rubio V (1996) Identification at strain level of Rhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Curr Genet 29:174–181

    CAS  PubMed  Article  Google Scholar 

  6. Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50

    CAS  PubMed  Article  Google Scholar 

  7. Ceresini PC, Shew HD, James TY, Vilgalys RJ, Cubeta MA (2007) Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci. BMC Evol Biol 7:163

    PubMed Central  PubMed  Article  Google Scholar 

  8. Chaijuckam P, Baek JM, Greer CA, Webster RK, Davis RM (2010) Population structure of Rhizoctonia oryzaesativae in California rice fields. Phytopathology 100:502–510

    CAS  PubMed  Article  Google Scholar 

  9. Chen C-M, de la Cerda KA, Kaminski JE, Douhan GW, Wong FP (2009) Geographic distribution and rDNA-ITS region sequence diversity of Waitea circinata var. circinata isolated from annual bluegrass in the US. Plant Dis 93:906–911

    CAS  Article  Google Scholar 

  10. Chen C-M, Douhan GW, Wong FP (2011) First report of basal leaf blight of kikuyugrass caused by Waitea circinata var. prodigus in Southern California. Plant Dis 95:767

    Article  Google Scholar 

  11. Ciampi MB, Meyer MC, Costa MJ, Zala M, McDonald BA, Ceresini PC (2008) Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology 98:932–941

    CAS  PubMed  Article  Google Scholar 

  12. Cubeta MA, Vilgalys R (1997) Population biology of the Rhizoctonia solani complex. Phytopathology 87:480–484

    CAS  PubMed  Article  Google Scholar 

  13. Dmitriev DA, Rakitov RA (2008) Decoding of superimposed traces produced by direct sequencing of heterozygous indels. PLoS Comput Biol 4:e1000113

    PubMed Central  PubMed  Article  Google Scholar 

  14. Ferrucho RL, Zala M, Zhang Z, Cubeta MA, Garcia-Dominguez C, Ceresini PC (2009) Highly polymorphic in silico-derived microsatellite loci in the potato-infecting fungal pathogen Rhizoctonia solani anastomosis group 3 from the Colombian Andes. Mol Ecol Res 9:1013–1016

    CAS  Article  Google Scholar 

  15. Ferrucho RL, Ceresini PC, Ramirez-Escobar UM, McDonald BA, Cubeta MA, García-Domínguez C (2013) The population genetic structure of Rhizoctonia solani AG-3PT from potato in the Colombian Andes. Phytopathology 103:862–869

    PubMed  Article  Google Scholar 

  16. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes––application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Article  Google Scholar 

  17. Godoy-Lutz G, Kuninaga S, Steadman JR, Powers K (2008) Phylogenetic analysis of Rhizoctonia solani subgroups associated with web blight symptoms on common bean based on ITS-5.8S rDNA. J Gen Plant Pathol 74:32–40

    CAS  Article  Google Scholar 

  18. González García V, Portal Onco MA, Rubio Susan V (2006) Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Article  Google Scholar 

  19. González-Vera AD, Bernardes-de-Assis J, Zala M, McDonald BA, Correa-Victoria F, Graterol-Matute EJ, Ceresini PC (2010) Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America. Phytopathology 100:172–182

    PubMed  Article  Google Scholar 

  20. Guo Q, Ogasawara T, Arakawa M, Inagaki K (2003) Annual changes in the number of vegetative compatibility groups of rice sheath blight fungus, Rhizoctonia solani AG-1 (IA), in a paddy field (in Japanese with English summary). Jpn J Phytopathol 69:212–219

    Article  Google Scholar 

  21. Guo Q, Kamio A, Sharma BS, Sagara Y, Arakawa M, Inagaki K (2006) Survival and subsequent dispersal of rice sclerotial disease fungi, Rhizoctonia oryzae and Rhizoctonia oryzaesativae, in paddy fields. Plant Dis 90:615–622

    Article  Google Scholar 

  22. Hayakawa T, Toda T, Ping Q, Mghalu JM, Yaguchi S, Hyakumachi M (2006) A new subgroup of Rhizoctonia AG-D, AG-D III, obtained from Japanese zoysia grass exhibiting symptoms of a new disease. Plant Dis 90:1389–1394

    CAS  Article  Google Scholar 

  23. Hietala AM, Vahala J, Hantula J (2001) Molecular evidence suggests that Ceratobasidium bicorne has an anamorph known as a conifer pathogen. Mycol Res 105:555–562

    CAS  Article  Google Scholar 

  24. Hyakumachi M, Priyatmojo A, Kubota M, Fukui H (2005) New anastomosis groups, AG-T and AG-U, of binucleate Rhizoctonia spp. causing root and stem rot of cut-flower and miniature roses. Phytopathology 95:784–792

    PubMed  Article  Google Scholar 

  25. Inagaki K (1998) Dispersal of rice sheath blight fungus, Rhizoctonia solani AG-1 (IA), and subsequent disease development in paddy fields, from survey of vegetative compatibility groups. Mycoscience 39:391–397

    Article  Google Scholar 

  26. Inagaki K, Guo Q, Arakawa M (2004) Overwintering of rice sclerotial disease fungi, Rhizoctonia and Sclerotium spp. in paddy fields in Japan. Plant Pathol J 3:81–87

    Article  Google Scholar 

  27. Johanson A, Turner HC, McKay GJ, Brown AE (1998) A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzaesativae. FEMS Microbiol Lett 162:289–294

    CAS  PubMed  Article  Google Scholar 

  28. Justesen AF, Yohalem D, Bay A, Nicolaisen M (2003) Genetic diversity in potato field populations of Thanatephorus cucumeris AG-3, revealed by ITS polymorphism and RAPD markers. Mycol Res 107:1323–1331

    CAS  PubMed  Article  Google Scholar 

  29. Kammerer SJ, Burpee LL, Harmon PF (2011) Identification of a new Waitea circinata variety causing basal leaf blight of seashore paspalum. Plant Dis 95:515–522

    Article  Google Scholar 

  30. Kuninaga S (2002) Current situation of the taxonomy of the genus Rhizoctonia and the R. solani species complex (in Japanese with English summary). Jpn J Phytopathol 68:3–20

    CAS  Article  Google Scholar 

  31. Kuninaga S (2003) Current situation of the taxonomy of Rhizoctonia solani (in Japanese). Plant Protect 57:219–222

    Google Scholar 

  32. Kuninaga S, Carling DE, Takeuchi T, Yokosawa R (2000) Comparison of rDNA-ITS sequences between potato and tobacco strains in Rhizoctonia solani AG-3. J Gen Plant Pathol 66:2–11

    CAS  Article  Google Scholar 

  33. Lees AK, Cullen DW, Sullivan L, Nicolson MJ (2002) Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathol 51:293–302

    CAS  Article  Google Scholar 

  34. Lim S, Notley-McRobb L, Lim M, Carter DA (2004) A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol 41:1025–1036

    CAS  PubMed  Article  Google Scholar 

  35. MacNish GC, Carling DE, Brainard KA (1993) Characterization of Rhizoctonia solani AG-8 from bare patches by pectic isozyme (zymogram) and anastomosis techniques. Phytopathology 83:922–927

    CAS  Article  Google Scholar 

  36. Matsumoto M (2002) Trials of direct detection and identification of Rhizoctonia solani AG 1 and AG 2 subgroups using specifically primed PCR analysis. Mycoscience 43:185–189

    CAS  Article  Google Scholar 

  37. McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87:448–453

    CAS  PubMed  Article  Google Scholar 

  38. Naito S, Sugimoto T (1978) Basidio-spore infection and lesion development on sugar beet leaves by Thanatephorus cucumeris (Frank) Donk. Ann Phytopath Soc Japan 44:426–431

    Article  Google Scholar 

  39. Naito S, Mochida H, Nakajima T, Ohto Y (1995) Infection with basidiospores of Thanatephorus cucumeris (AG 2-3 of Rhizoctonia solani) and development of soybean foliar blight lesions. Ann Phytopathol Soc Jpn 61:362–368

    Article  Google Scholar 

  40. Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annu Rev Phytopathol 25:125–143

    Article  Google Scholar 

  41. Ogoshi A, Ui T (1983) Diversity of clones within an anastomosis group of Rhizoctonia solani Kühn in a field (in Japanese with English summary). Ann Phytopath Soc Japan 49:239–245

    Article  Google Scholar 

  42. Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology 98:837–847

    CAS  PubMed  Article  Google Scholar 

  43. Pannecoucque J, Höfte M (2009) Detection of rDNA ITS polymorphism in Rhizoctonia solani AG 2-1 isolates. Mycologia 101:26–33

    CAS  PubMed  Article  Google Scholar 

  44. Priyatmojo A, Escopalao VE, Tangonan NG, Pascual CB, Suga H, Kageyama K, Hyakumachi M (2001) Characterization of a new subgroup of Rhizoctonia solani anastomosis group 1 (AG-1-ID), causal agent of a necrotic leaf spot on coffee. Phytopathology 91:1054–1061

    CAS  PubMed  Article  Google Scholar 

  45. Sayler RJ, Yang Y (2007) Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen, in rice using real-time PCR. Plant Dis 91:1663–1668

    CAS  Article  Google Scholar 

  46. Sharon M, Kuninaga S, Hyakumachi M, Sneh B (2006) The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 47:299–316

    CAS  Article  Google Scholar 

  47. Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114

    CAS  Article  Google Scholar 

  48. Stalpers JA, Andersen TF (1996) A synopsis of the taxonomy of teleomorphs connected with Rhizoctonia SL. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht, pp 49–63

    Google Scholar 

  49. Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100

    CAS  PubMed  Article  Google Scholar 

  50. Toda T, Mghalu JM, Hayakawa T, Hyakumachi M (2004) Development of specific primers for each variety of Rhizoctonia circinata (abstract). Inoculum 55(4):36–37

    Google Scholar 

  51. Zala M, McDonald BA, Bernardes de Assis J, Ciampi MB, Storari M, Peyer P, Ceresini PC (2008) Highly polymorphic microsatellite loci in the rice-and maize-infecting fungal pathogen Rhizoctonia solani anastomosis group 1 IA. Mol Ecol Res 8:686–689

    CAS  Article  Google Scholar 

  52. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Bruce A. McDonald, ETH Zürich, and Dr. Paulo C. Ceresini, UNESP, for critical review of the manuscript and helpful comments. This work was supported in part by a Grant-in-Aid for Young Scientists (B) No. 16780032 from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masao Arakawa.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arakawa, M., Inagaki, K. Molecular markers for genotyping anastomosis groups and understanding the population biology of Rhizoctonia species. J Gen Plant Pathol 80, 401–407 (2014). https://doi.org/10.1007/s10327-014-0536-0

Download citation

Keywords

  • Anastomosis groups
  • Microsatellite
  • Phylogeography
  • Rhizoctonia