Skip to main content
Log in

Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR–RFLP

  • Bacterial and Phytoplasma Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Forty-one representative Japanese Dickeya spp. (Erwinia chrysanthemi) strains isolated from 24 plants in Japan were investigated using multilocus sequence analysis of recA, dnaX, rpoD, gyrB and 16S rDNA; PCR–RFLP (restriction fragment length polymorphism) of recA, rpoD and gyrB genes; PCR genomic fingerprinting; and biochemical tests. Based on the recA, dnaX, rpoD, gyrB and 16S rDNA sequences and PCR genomic fingerprinting, the strains were essentially divided into six groups (I–VI). Group I corresponded to D. chrysanthemi, group II corresponded to D. dadantii, group III to D. dianthicola and group IV to D. zeae. Meanwhile, group V and group VI could not be assigned to any existing Dickeya species, and they were deduced to be two putative new species. The PCR–RFLP analysis of gyrB, rpoD and recA clearly differentiated the six groups of Dickeya strains. From the results of the biochemical tests, the strains were assigned to biovars 1, 3, 5, 8 and 9; only one strain (SUPP 2525) was not assignable to the existing biovars. We also showed that the PCR–RFLP analysis of rpoD, gyrB and recA can be used as a rapid technique to identify Japanese Dickeya strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology, vol 1. Wiley, New York

    Google Scholar 

  • Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P, Coutinho TA, Vos PD (2012) Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., description of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol 62:1592–1602

    Article  CAS  PubMed  Google Scholar 

  • Cother EJ, Bradley JK, Gillings MR, Fahy PC (1992) Characterization of Erwinia chrysanthemi biovars in alpine water sources by biochemical properties, GLC fatty acid analysis and genomic DNA fingerprinting. J Appl Bacteriol 73:99–107

    Article  CAS  Google Scholar 

  • Dickey RS (1979) Erwinia chrysanthemi: a comparative study of phenotypic properties of strains from several hosts and other Erwinia species. Phytopathology 69:324–329

    Article  Google Scholar 

  • Dickey RS, Victoria JI (1980) Taxonomy and emended description of strains of Erwinia isolated from Musa paradisiaca Linnaeus. Int J Syst Bacteriol 30:129–134

    Article  CAS  Google Scholar 

  • Duarte V, De Boer SH, Ward LJ, de Oliveira AMR (2004) Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J Appl Microbiol 96:535–545

    Article  CAS  PubMed  Google Scholar 

  • Dye DW (1968) A taxonomic study of the genus Erwinia. I. The, “amylovora” group. New Zeal J Sci 11:590–607

    Google Scholar 

  • Dye DW (1969a) A taxonomic study of the genus Erwinia. II. The “carotovora” group. New Zeal J Sci 12:81–97

    Google Scholar 

  • Dye DW (1969b) A taxonomic study of the genus Erwinia. III. The “herbicola” group. New Zeal J Sci 12:223–236

    Google Scholar 

  • Dye DW (1969c) A taxonomic study of the genus Erwinia. IV. “Atypical” erwinias. New Zeal J Sci 12:833–839

    Google Scholar 

  • Dye DW (1978) Genus V Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, 1920. In: Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF (eds) A proposed nomenclature and classification for plant pathogenic bacteria. New Zeal J Agric Res 21:153–177

  • Elphinstone JG (1987) Soft rot and black leg of potato: Erwinia spp. Technical Information Bulletin 21 International Potato Center, Lima p 18

  • Funakubo T, Watauchi K, Murakami Y, Takikawa Y (2010) Erwinia chrysanthemi isolated from sudden death syndrome (in Japanese). Proc Kanto-Tosan Plant Prot Soc 57:41–43

    Google Scholar 

  • Goto M (1979) Bacterial foot rot of rice caused by strain of Erwinia chrysanthemi. Phytopathology 69:213–216

    Article  Google Scholar 

  • Goto M (1983) Nomenclature of the rice strain of Erwinia chrysanthemi, the causal agent of bacterial foot rot of rice. Ann Phytopath Soc Jpn 49:576–579

    Article  Google Scholar 

  • Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J, Verdonck L, Swings J (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397

    Article  CAS  PubMed  Google Scholar 

  • Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito Y, Takikawa Y, Tsuyumu S, Goto M (1990a) Erwinia chrysanthemi isolated from soft rotted Phalaenopsis (in Japanese). Ann Phytopath Soc Jpn 56:98–99

    Google Scholar 

  • Ito Y, Takikawa Y, Akayama K, Uematsu S, Tsuyumu S, Goto M (1990b) Bacterial soft rot of Oncidium and Vanda (abstract in Japanese). Ann Phytopath Soc Jpn 56:394

    Google Scholar 

  • Jiménez-Hidalgo I, Virgen-Calleros G, Martínez-de la Vega O, Vandemark G, Olalde-Portugal V (2004) Identification and characterisation of bacteria causing soft-rot in Agave tequilana. Eur J Plant Pathol 110:317–331

    Article  Google Scholar 

  • Kanno E, Ito K, Shinohara H, Sasaki M (2002) Occurrence of peach sudden death syndrome in Fukushima Prefecture and a study of causal pathogenic bacteria (in Japanese). Annu Rept Plant Prot North Jpn 53:137–140

    Google Scholar 

  • Kijima T, Yamashita S, Doi Y (1985) Bacterial foot rot of foxtail millet, stem gall of Gypsophila paniculata and leaf rot of Spathiphyllum spp. caused by Erwinia spp. (abstract in Japanese). Ann Phytopath Soc Jpn 51:344

    Google Scholar 

  • Kim WK, Gardan L, Rhim SL, Geiderl K (1999) Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Kwon SW, Go SJ, Kang HW, Ryu JC, Jo JK (1997) Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. Int J Syst Bacteriol 47:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Laurila J, Ahola V, Lehtinen A, Joutsjoki T, Hannukkala A, Rahkonen A, Pirhonen M (2008) Characterization of Dickeya strains isolated from potato and river water samples in Finland. Eur J Plant Pathol 122:213–225

    Article  CAS  Google Scholar 

  • Lelliot RA (1974) Genus XII Erwinia. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins Co., Baltimore, pp 332–339

    Google Scholar 

  • Lelliot RA, Billing E, Hayward AC (1966) A determinative scheme for the fluorescent plant pathogenic pseudomonads. J App Bacteriol 29:470–489

    Article  Google Scholar 

  • Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski O (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163

    Article  PubMed  Google Scholar 

  • Maeda Y, Shinohara H, Kiba A, Ohnishi K, Furuya N, Kawamura Y, Ezaki T, Vandamme P, Tsushima S, Hikichi Y (2006) Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int J Syst Evol Microbiol 56:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Matsuda I, Shirota A, Tsuchiya Y, Ikeda H (1984) Bacterial soft rot on eggplant caused by Erwinia chrysanthemi (abstract in Japanese). Ann Phytopathol Soc Jpn 50:420

    Google Scholar 

  • Matsuura T, Shinohara H, Inoue Y, Azegami K, Tsushima S, Tsukamoto T, Mizuno A (2007) Erwinia isolates from the bacterial shoot blight of pear in Japan are closely related to Erwinia pyrifoliae based on phylogenetic analyses of gyrB and rpoD genes. J Gen Plant Pathol 73:53–58

    Article  CAS  Google Scholar 

  • Miyahira N, Takushi T, Furuya N, Kawano S, Takeshita M, Tsuchiya K (2008) Bacterial shoot blight of mango (Mangifera indica L.) caused by Erwinia chrysanthemi (abstract in Japanese). Ann Phytopathol Soc Jpn 74:253–254

    Google Scholar 

  • Mizuno A, Nakanishi T, Nishiyama K (1993) Bacterial wilt of yacon strawberry caused by Erwinia chrysanthemi (in Japanese). Ann Phytopath Soc Jpn 59:702–708

    Article  Google Scholar 

  • Ngwira N, Samson R (1990) Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. Agronomie 10:341–345

    Article  Google Scholar 

  • Nishiyama K (1978) The tentative plan of simple identification method of plant pathogenic bacteria (in Japanese). Plant Prot (Shokubutsu Boeki) 32:283–288

    Google Scholar 

  • Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37:1661–1669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkinson N, Stead D, Bew J, Heeney J, Tsror (Lahkim) L, Elphinstone J (2009) Dickeya species relatedness and clade structure determined by comparison of recA sequences. Int J Syst Evol Microbiol 59:2388–2393

    Article  CAS  PubMed  Google Scholar 

  • Perombelon MCM, Kelman A (1980) Ecology of the soft rot erwinias. Annu Rev Phytopathol 18:361–387

    Article  Google Scholar 

  • Rademaker JLW, Louws FJ, de Bruijn FJ (1998) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. In: Akkermans ADL, van Elsas JD, de Bruijin FL (eds) Molecular microbial ecology manual, suppl 3, chapter 3.4.3. Kluwer, Dordrecht pp 1–27

  • Ryu E (1940) A simple method of differentiation between gram-positive and gram-negative organism without staining. Kitasato Arch Exp Med 17:58–63

    Google Scholar 

  • Saito T (1985) Bacterial stunt of carnation caused by Erwinia chrysanthemi pv dianthicola. Ann Phytopath Soc Jpn 51:145–151

    Article  Google Scholar 

  • Sakai K (1995) Occurrence of bacterial wilt disease of chicory, Cichorium intybus L., and control experiments by chemicals (in Japanese). Proc Kanto-Tosan Plant Prot Soc 42:55–57

    Google Scholar 

  • Sakai K (1997) Occurrence of bacterial wilt of Kalanchoe blossfeldiana caused by Erwinia chrysanthemi (in Japanese). Proc Kanto-Tosan Plant Prot Soc 44:155–159

    Google Scholar 

  • Sakamoto M, Huang Y, Ohnishi M, Umeda M, Ishikawa I, Benno Y (2004) Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J Med Microbiol 53:563–571

    Article  CAS  PubMed  Google Scholar 

  • Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L et al (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427

    Article  CAS  PubMed  Google Scholar 

  • Slawiak M, van Beckhoven JRCM, Speksnijder AGCL, Czajkowski R, Grabe G, van der Wolf JM (2009) Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol 125:245–261

    Article  Google Scholar 

  • Society of American Bacteriologists (1957) Manual of microbiological methods. McGraw-Hill, New York, p 54

    Google Scholar 

  • Starr MP, Chatterjee AK (1972) The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol 26:389–426

    Article  CAS  PubMed  Google Scholar 

  • Sugama E, Tsuchiya K, Tamori M, Wakimoto S (1986) Bacterial corm and root of taro (Colocasia esculenta (L) Schott) (abstract in Japanese). Ann Phytopath Soc Jpn 52:505

    Google Scholar 

  • Suyama K, Nashu Y, Fuji H, Fumemoto K, Aono N (1987) Pathogen on Erwinia rusty canker of Japanese pear (abstract in Japanese). Ann Phytopath Soc Jpn 53:71

    Google Scholar 

  • Takeuchi T, Kodama F (1992) Bacterial stalk rot of corn caused by Erwinia chrysanthemi pv. zeae (Sabet) Victoria, Arboleda et Munoz occurred in Hokkaido, Japan (in Japanese). Soc Plant Prot North Jpn 43:42–44

    Google Scholar 

  • Takikawa Y, Yamashita S, Doi Y, Koshira K (1982) Bacterial stalk rot of corn, bacterial streak of bromus grass and bacterial gall of Myrica rubra (abstract in Japanese). Ann Phytopath Soc Jpn 48:76

    Article  Google Scholar 

  • Takikawa Y, Yoshino M, Yamashita S, Doi Y (1983) Erwinia chrysanthemi isolated from rotted Welsh onion (abstract in Japanese). Ann Phytopath Soc Jpn 49:415

    Google Scholar 

  • Tamura I, Azegami K, Miura T, Nishi K (1998) Bacterial stem and root rot of sweet potato caused by Erwinia chrysanthemi (abstract in Japanese). Ann Phytopathol Soc Jpn 64:376

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanii A, Baba T et al (1971) Bacterial plant diseases in Hokkaido. II. Bacterial stem rot of potato plant caused by Erwinia chrysanthemi Burkholder et al. (Pectobacterium carotovorum var. chrysanthemi) (in Japanese). Bull Hokkaido Agric Exp Stn 24:1–9

    Google Scholar 

  • Tominaga T, Ogasawara K (1979) Bacterial stem rot of potato caused by Erwinia chrysanthemi (in Japanese). Ann Phytopath Soc Jpn 45:474–477

    Article  Google Scholar 

  • Toth IK, Avrova AO, Hyman LJ (2001) Rapid identification and differentiation of the soft rot erwinias by 16S–23S intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses. App Environ Microbiol 67:4070–4076

    Article  CAS  Google Scholar 

  • Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Helias V, Pirhonen M, Tsor (Lahkim) L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–399

    Article  Google Scholar 

  • Uematsu T, Tagami M, Tekeuchi T, Kato H (1985) Characterization of the bacterium inciting rice foot rot in Mie and Chiba Prefectures (in Japanese). Proc Kanto-Tosan Plant Prot Soc 32:30–32

    Google Scholar 

  • Umemoto K, Nagai Y (1984) Occurrence of erwinia rusty canker on Japanese pear (abstract in Japanese). Ann Phytopath Soc Jpn 50:83

    Google Scholar 

  • van der Merwe JJ, Coutinho TA, Korsten L, van der Waals JE (2010) Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. Eur J Plant Pathol 126:175–185

    Article  Google Scholar 

  • Waldee EL (1945) Comparative studies of some peritrichous phytopathogenic bacteria. Iowa State J Sci 19:435–484

    Google Scholar 

  • Waleron M, Waleron K, Podhajska AJ, Łojkowska E (2002) Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583–595

    CAS  PubMed  Google Scholar 

  • Waleron M, Waleron K, Geider K, Lojkowska E (2008) Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. Eur J Plant Pathol 121:161–172

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winslow C-EA, Broadhurst J, Buchanan RE, Krumwiede C Jr, Rogers LA, Smith GH (1917) The families and genera of the bacteria. Preliminary report of the committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J Bacteriol 2:505–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Bouvet PJM, Harayama S (1999) Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95

    Article  CAS  PubMed  Google Scholar 

  • Yanagiya Y, Furuya N, Kurose D, Inada M, Yamaguchi J, Takesita M, Tsuchiya K (2013) On the Erwinia spp. isolated from Chinese lantern plant (Physalis alkekengi L.) showing soft rot (abstract in Japanese). Jpn J Phytopathol 79:71–72

    Google Scholar 

  • Yoshimatsu H, Hasama W (1997) Bacterial stem rot of strawberry (Fragaria × ananassa, Duch) caused by Erwinia chrysanthemi (abstract in Japanese). Ann Phytopathol Soc Jpn 63:197

    Google Scholar 

  • Young JM, Park DC (2007) Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. Syst App Microbiol 30:343–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants provided by a research project of the NIAS Genebank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Takikawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 379 kb)

Supplementary material 2 (DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suharjo, R., Sawada, H. & Takikawa, Y. Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR–RFLP. J Gen Plant Pathol 80, 237–254 (2014). https://doi.org/10.1007/s10327-014-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-014-0511-9

Keywords

Navigation