Skip to main content

Systematics of key phytopathogenic Fusarium species: current status and future challenges

Abstract

This review is intended to provide plant pathologists and other scientists with a current overview of the most important Fusarium phytopathogens and mycotoxin producers. Knowledge of Fusarium species diversity and their evolutionary relationships has increased dramatically due to the application of multilocus molecular phylogenetics and genealogical concordance phylogenetic species recognition over the past 15 years. Currently Fusarium is estimated to comprise at least 300 genealogically exclusive phylogenetic species; however, fewer than half have been formally described. The most important plant pathogens reside in the following four groups: the F. fujikuroi species complex noted for Bakanae of rice, ear rot of maize, pitch canker of pine and several species that contaminate corn and other cereals with fumonisin mycotoxins; the F. graminearum species complex including the primary agents causing Fusarium head blight of wheat and barley that contaminate grain with trichothecene mycotoxins; the F. oxysporum species complex including vascular wilt agents of over 100 agronomically important crops; and the F. solani species complex, which includes many economically destructive foot and root rot pathogens of diverse hosts. Several other Fusarium phytopathogens reported from Japan and nested within other species complexes are reviewed briefly. With the abandonment of dual nomenclature, a broad consensus within the global community of Fusarium researchers has strongly supported the unitary use of the name Fusarium instead of several teleomorph names linked to it. Plant pathologists and other scientists needing accurate identifications of Fusarium isolates are encouraged to use Fusarium-ID and Fusarium MLST, Internet accessible websites dedicated to the molecular identification of Fusarium species.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia 91:597–609

    Article  Google Scholar 

  2. Aoki T, O’Donnell K, Ichikawa K (2001) Fusarium fractiflexum sp. nov. and two other species within the Gibberella fujikuroi species complex recently discovered in Japan that form aerial conidia in false heads. Mycoscience 42:461–478

    Article  Google Scholar 

  3. Aoki T, O’Donnell K, Homma Y, Lattanzi AR (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684

    PubMed  Article  Google Scholar 

  4. Aoki T, O’Donnell K, Scandiani MM (2005) Sudden death syndrome of soybean in South America is caused by four species of Fusarium: Fusarium brasiliense sp. nov., F. cuneirostrum sp. nov., F. tucumaniae, and F. virguliforme. Mycoscience 46:162–183

    Article  Google Scholar 

  5. Aoki T, Scandiani MM, O’Donnell K (2012a) Phenotypic, molecular phylogenetic, and pathogenic characterization of Fusarium crassistipitatum sp. nov., a novel soybean sudden death syndrome pathogen from Argentina and Brazil. Mycoscience 53:167–186

    CAS  Article  Google Scholar 

  6. Aoki T, Tanaka F, Suga H, Hyakumachi M, Scandiani MM, O’Donnell K (2012b) Fusarium azukicola sp. nov., an exotic azuki bean root-rot pathogen in Hokkaido, Japan. Mycologia 104:1068–1084

    PubMed  Article  Google Scholar 

  7. Aoki T, Ward TJ, Kistler HC, O’Donnell K (2012c) Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins 62:91–102

    CAS  Article  Google Scholar 

  8. Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000) Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol Plant Microbe Interact 13:1330–1339

    CAS  PubMed  Article  Google Scholar 

  9. Armstrong GM, Armstrong JK (1981) Formae speciales and races of Fusarium oxysporum causing wilt disease. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: disease, biology, and taxonomy. Pennsylvania State University Press, University Park, Pennsylvania, pp 391–399

    Google Scholar 

  10. Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900

    CAS  PubMed  Article  Google Scholar 

  11. Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew

    Google Scholar 

  12. Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:611–624

    CAS  Article  Google Scholar 

  13. Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233

    CAS  PubMed  Article  Google Scholar 

  14. Cook RJ (1967) Gibberella avenacea sp. n., perfect stage of Fusarium roseum f. sp. cerealis “Avenaceum”. Phytopathology 57:732–736

    Google Scholar 

  15. Correll JC, Puhalla JE, Schneider RW (1986) Identification of Fusarium oxysporum f. sp. apii on the basis of colony size, virulence and vegetative compatibility. Phytopathology 76:396–400

    Article  Google Scholar 

  16. Correll JC, Klittich CJR, Leslie JF (1987) Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640–1646

    Article  Google Scholar 

  17. Correll JC, Gordon TR, McCain AH, Fox JW, Koehler CS, Wood DL, Schultz ME (1991) Pitch canker disease in California: pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Dis 75:676–682

    Article  Google Scholar 

  18. Covert SF, Aoki T, O’Donnell K, Starkey D, Holliday A, Geiser DM, Cheung F, Town C, Strom A, Juba J, Scandiani M, Yang XB (2007) Sexual reproduction in the soybean sudden death syndrome pathogen Fusarium tucumaniae. Fungal Genet Biol 44:799–807

    CAS  PubMed  Article  Google Scholar 

  19. Elias KS, Schneider RW (1991) Vegetative compatibility groups in Fusarium oxysporum f. sp. lycopersici. Phytopathology 81:159–162

    Article  Google Scholar 

  20. Fujikuro Y (1916) On Bakanae-disease of rice (in Japanese). Formosan Agr Rev 121:5–12

    Google Scholar 

  21. Fujinaga M, Ogiso H, Shinohara H, Tsushima S, Nishimura N, Togawa M, Saito H, Nozue M (2005) Phylogenetic relationships between the lettuce root rot pathogen Fusarium oxysporum f. sp. lactucae races 1, 2, and 3 based on the sequence of the intergenic spacer region of its ribosomal DNA. J Gen Plant Pathol 71:402–407

    CAS  Article  Google Scholar 

  22. Geiser DM, Juba JH, Wang B, Jeffers SN (2001) Fusarium hostae sp. nov., a relative of F. redolens with a Gibberella teleomorph. Mycologia 93:670–678

    Article  Google Scholar 

  23. Geiser DM, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    CAS  Article  Google Scholar 

  24. Geiser DM, Lewis Ivey ML, Hakiza G, Juba JH, Miller SA (2005) Gibberella xylarioides (anamorph: Fusarium xylarioides), a causative agent of coffee wilt disease in Africa, is a previously unrecognized member of the G. fujikuroi species complex. Mycologia 97:191–201

    PubMed  Article  Google Scholar 

  25. Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK, Brandt ME, Brown DW, Burgess LW, Chulze S, Coleman JJ, Correll JC, Covert SF, Crous PW, Cuomo CA, De Hoog GS, Di Pietro A, Elmer WH, Epstein L, Frandsen RJN, Freeman S, Gagkaeva T, Glenn AE, Gordon TR, Gregory NF, Hammond-Kosack KE, Hanson LE, del Mar Jímenez-Gasco M, Kang S, Kistler HC, Kuldau GA, Leslie JF, Logrieco A, Lu G, Lysøe E, Ma L-J, McCormick SP, Migheli Q, Moretti A, Munaut F, O’Donnell K, Pfenning L, Ploetz RC, Proctor RH, Rehner SA, Robert VARG, Rooney AP, Bin Salleh B, Scandiani MM, Scauflaire J, Short DPG, Steenkamp E, Suga H, Summerell BA, Sutton DA, Thrane U, Trail F, Van Diepeningen A, VanEtten HD, Viljoen A, Waalwijk C, Ward TJ, Wingfield MJ, Xu J-R, Yang X-B, Yli-Mattila T, Zhang N (2013) One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–408

    PubMed  Article  Google Scholar 

  26. Gelderblom WCA, Jaskiewicz K, Marasas WFO, Thiel PG, Horak RM, Vleggaar R, Kriek NPJ (1988) Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gerlach W, Nirenberg HI (1982) The genus Fusarium—a pictorial atlas. Mitt Biol Bundesanst Land Forstwirtsch Berlin Dahlem 209:1–406

    Google Scholar 

  28. Hawksworth DL (2012) Managing and coping with names of pleomorphic fungi in a period of transition. IMA Fungus 3:15–24

    PubMed Central  PubMed  Article  Google Scholar 

  29. Hepting GH, Roth ER (1946) Pitch canker, a new disease of some southern pines. J For 44:742–744

    Google Scholar 

  30. Hori S (1898) Experiment on Bakanae of rice (in Japanese). Agricult Exp Stat Rec Ministry Agricul Comm 12:110–119

    Google Scholar 

  31. Hsieh WH, Smith SN, Snyder WC (1977) Mating groups in Fusarium moniliforme. Phytopathology 67:1041–1043

    Article  Google Scholar 

  32. Ito S (1930) Miscellaneous talk on rice disease (in Japanese). Ann Phytopath Soc Jpn 2:276–277

    Article  Google Scholar 

  33. Jacobson DJ, Gordon TR (1988) Vegetative compatibility and self-incompatibility within Fusarium oxysporum f. sp. melonis. Phytopathology 78:668–672

    Article  Google Scholar 

  34. Katan T, Katan J (1988) Vegetative-compatibility grouping of Fusarium oxysporum f. sp. vasinfectum from tissue and the rhizosphere of cotton plants. Phytopathology 78:852–855

    Article  Google Scholar 

  35. Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539:105–110

    CAS  PubMed  Article  Google Scholar 

  36. Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    CAS  PubMed  Article  Google Scholar 

  37. Kistler HC (1997) Genetic diversity in the plant-pathogenic fungus Fusarium oxysporum. Phytopathology 87:474–479

    CAS  PubMed  Article  Google Scholar 

  38. Kistler HC, Alabouvette C, Baayen RP, Bentley S, Brayford D, Coddington A, Correll J, Daboussi M-J, Elias K, Fernandez D, Gordon TR, Katan T, Kim HG, Leslie JF, Martyn RD, Migheli Q, Moore NY, O’Donnell K, Ploetz RC, Rutherford MA, Summerell B, Waalwijk C, Woo S (1998) Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology 88:30–32

    CAS  PubMed  Article  Google Scholar 

  39. Kobayashi T, Muramoto M (1989) Pitch canker of Pinus luchuensis, a new disease in Japanese forests (in Japanese). For Pests 38:169–173

    Google Scholar 

  40. Kristensen R, Torp M, Kosiak B, Holst-Jensen A (2005) Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1α gene sequences. Mycol Res 109:173–186

    CAS  PubMed  Article  Google Scholar 

  41. Kuhlman EG (1982) Varieties of Gibberella fujikuroi with anamorphs in Fusarium section Liseola. Mycologia 74:759–768

    Article  Google Scholar 

  42. Kurosawa E (1926) Experimental studies on the substance secreted by the ‘bakanae’ fungus of rice (a preliminary report) (in Japanese). Trans Nat Hist Soc Taiwan 16(87):213–227

    Google Scholar 

  43. Kurosawa E (1930) On the overgrowth phenomenon of rice seedlings by the excretion of the cultures of Lisea Fujikuroi Sawada and related organism (in Japanese). Trans Nat Hist Soc Taiwan 20:218–239

    Google Scholar 

  44. Lee T, Han Y-K, Kim K-H, Yun S-H, Lee Y-W (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Leslie JF (1995) Gibberella fujikuroi: available populations and variable traits. Can J Bot 73(suppl 1):282–291

    Article  Google Scholar 

  46. Leslie JF, Marasas WFO, Shephard GS, Sydenham EW, Stockenström S, Thiel PG (1996) Duckling toxicity and the production of fumonisin and moniliformin by isolates in the A and F mating populations of Gibberella fujikuroi (Fusarium moniliforme). Appl Environ Microbiol 62:1182–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lima CS, Pfenning LH, Costa SS, Abreu LM, Leslie JF (2012) Fusarium tupiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia 104:1408–1419

    CAS  PubMed  Article  Google Scholar 

  48. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    CAS  PubMed  Article  Google Scholar 

  49. Matuo T (1972) Taxomonic studies of phytopathogenic fusaria in Japan. Rev Plant Protec Res 5:34–45

    Google Scholar 

  50. Matuo T, Snyder WC (1973) Use of morphology and mating populations in the identification of formae speciales in Fusarium solani. Phytopathology 63:562–565

    Article  Google Scholar 

  51. Nalim FA, Elmer WH, McGovern RJ, Geiser DM (2009) Multilocus phylogenetic diversity of Fusarium avenaceum pathogenic on lisianthus. Phytopathology 99:462–468

    CAS  PubMed  Article  Google Scholar 

  52. Nalim FA, Samuels GJ, Wijesundera RL, Geiser DM (2011) New species from the Fusarium solani species complex derived from perithecia and soil in the old world tropics. Mycologia 103:1302–1330

    PubMed  Article  Google Scholar 

  53. Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species. An illustrated manual for identification. Pennsylvania State University Press, University Park

    Google Scholar 

  54. Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458

    Article  Google Scholar 

  55. O’Donnell K (2000) Molecular phylogeny of the Nectria haematococcaFusarium solani species complex. Mycologia 92:919–938

    Article  Google Scholar 

  56. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylo Evol 7:103–116

    Article  Google Scholar 

  57. O’Donnell K, Cigelnik E, Nirenberg HI (1998a) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493

    Article  Google Scholar 

  58. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998b) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049

    PubMed Central  PubMed  Article  Google Scholar 

  59. O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000a) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97:7905–7910

    PubMed Central  PubMed  Article  Google Scholar 

  60. O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E (2000b) A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78

    Article  Google Scholar 

  61. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623

    PubMed  Article  Google Scholar 

  62. O’Donnell K, Sutton DA, Fothergill A, McCarthy D, Rinaldi MG, Brandt ME, Zhang N, Geiser DM (2008a) Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46:2477–2490

    PubMed Central  PubMed  Article  Google Scholar 

  63. O’Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjørnstad A, Klemsdal SS (2008b) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet Biol 45:1514–1522

    PubMed  Article  Google Scholar 

  64. O’Donnell K, Sink S, Scandiani MM, Luque A, Colletto A, Biasoli M, Lenzi L, Salas G, González V, Ploper LD, Formento N, Pioli RN, Aoki T, Yang XB, Sarver BAJ (2010a) Soybean sudden death syndrome species diversity within North and South America revealed by multilocus genotyping. Phytopathology 100:58–71

    PubMed  Article  Google Scholar 

  65. O’Donnell K, Sutton DA, Rinaldi MG, Sarver BAJ, Balajee SA, Schroers H-J, Summerbell RC, Robert VARG, Crous PW, Zhang N, Aoki T, Jung K, Park J, Lee Y-H, Kang S, Park B, Geiser DM (2010b) Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol 48:3708–3718

    PubMed Central  PubMed  Article  Google Scholar 

  66. O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Ward TJ, Frandsen RJN, Lysøe E, Rehner SA, Aoki T, Robert VARG, Crous PW, Groenewald JZ, Kang S, Geiser DM (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    PubMed  Article  Google Scholar 

  67. Park B, Park J, Cheong K-C, Choi J, Jung K, Kim D, Lee Y-H, Ward TJ, O’Donnell K, Geiser DM, Kang S (2011) Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucl Acids Res 39:D640–D646

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  68. Phinney BO, West CA (1960) Gibberellins as native plant growth regulators. Annu Rev Plant Physiol 11:411–436

    CAS  Article  Google Scholar 

  69. Phytopathological Society of Japan (PSJ); National Institute of Agrobiological Sciences (NIAS) (2012) Common names of plant diseases in Japan, 2nd edn. Phase Out Inc., Nagoya

    Google Scholar 

  70. Placinta CM, D’Mello JPF, Macdonald AMC (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37

    CAS  Article  Google Scholar 

  71. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    CAS  PubMed  Article  Google Scholar 

  72. Proctor RH, Plattner RD, Brown DW, Seo J-A, Lee Y-W (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815–822

    CAS  PubMed  Article  Google Scholar 

  73. Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142

    CAS  PubMed  Article  Google Scholar 

  74. Puhalla JE (1985) Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Can J Bot 63:179–183

    Article  Google Scholar 

  75. Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  76. Rossman AY, Samuels GJ, Rogerson CT, Lowen R (1999) Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol 42:1–248

    Google Scholar 

  77. Sakurai Y, Matuo T (1960) Studies on the intraspecific group in Fusarium solani. (1) On mating populations and morphologic groups in the species (in Japanese). Res Rep Fac Text Sericult Shinshu Univ 10:21–32

    Google Scholar 

  78. Sarver BAJ, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107

    PubMed  Article  Google Scholar 

  79. Sawada K (1912) Diseases of agricultural crops in Taiwan (in Japanese). Formosan Agr Rev 63:9–17

    Google Scholar 

  80. Sawada K (1917) Contributions on Formosan fungi, Part 14 (in Japanese). Trans Nat Hist Soc Taiwan 7:128–135

    Google Scholar 

  81. Schroers HJ, Baayen RP, Meffert JP, de Gruyter J, Hooftman M, O’Donnell K (2004) Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia × hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96:393–406

    PubMed  Article  Google Scholar 

  82. Seifert KA, Aoki T, Baayen RP, Brayford D, Burgess LW, Chulze S, Gams W, Geiser D, de Gruyter J, Leslie JF, Logrieco A, Marasas WFO, Nirenberg HI, O’Donnell K, Rheeder J, Samuels GJ, Summerell BA, Thrane U, Waalwijk C (2003) The name Fusarium moniliforme should no longer be used. Mycol Res 107:643–644

    Article  Google Scholar 

  83. Skovgaard K, Nirenberg HI, O’Donnell K, Rosendahl S (2001) Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91:1231–1237

    CAS  PubMed  Article  Google Scholar 

  84. Snyder WC, Hansen HN (1940) The species concept in Fusarium. Amer J Bot 27:64–67

    Article  Google Scholar 

  85. Snyder WC, Hansen HN (1941) The species concept in Fusarium with reference to section Martiella. Amer J Bot 28:738–742

    Article  Google Scholar 

  86. Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to Discolor and other sections. Amer J Bot 32:657–666

    Article  Google Scholar 

  87. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204

    CAS  PubMed  Article  Google Scholar 

  88. Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159–166

    CAS  PubMed  Article  Google Scholar 

  89. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–31

    CAS  PubMed  Article  Google Scholar 

  90. VanEtten HD, Kistler HC (1988) Nectria haematococca, mating populations I and VI. Adv Plant Pathol 6:189–206

    Article  Google Scholar 

  91. Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA 99:9278–9283

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  92. Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    PubMed  Article  Google Scholar 

  93. Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21

    CAS  PubMed  Article  Google Scholar 

  94. Wineland GO (1924) An ascigerous stage and synonomy for Fusarium moniliforme. J Agric Res 28:909–922

    Google Scholar 

  95. Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, Coutinho TA (2008) Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australasian Plant Pathol 37:319–334

    Article  Google Scholar 

  96. Wollenweber HW, Reinking OA (1935) Die Fusarien, ihre Beschreibung. Schadwirkung und Bekämpfung, Paul Parey, Berlin

    Google Scholar 

  97. Yabuta T (1935) Biochemistry of the ‘bakanae’ fungus of rice (in Japanese). Agr Hort (Tokyo) 10:17–22

    Google Scholar 

  98. Yabuta T, Hayashi T (1939) Biochemical studies on the bakanae fungus of rice. II. Isolation of ‘gibberellin’, the active principle which makes the rice seedlings grow slenderly (in Japanese). J Agric Chem Soc Jpn 15:257–266

    CAS  Google Scholar 

  99. Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20

    CAS  PubMed  Article  Google Scholar 

  100. Zhang N, O’Donnell K, Sutton DA, Nalim FA, Summerbell RC, Padhye AA, Geiser DM (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 44:2186–2190

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to numerous colleagues, and individuals and culture collections that have provided us with cultures and related information on phytopathogenic species of Fusarium. The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned. The USDA is an equal opportunity provider and employer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takayuki Aoki.

About this article

Cite this article

Aoki, T., O’Donnell, K. & Geiser, D.M. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80, 189–201 (2014). https://doi.org/10.1007/s10327-014-0509-3

Download citation

Keywords

  • Biological species
  • Comparative morphology
  • Evolution
  • Molecular phylogeny
  • Morphological species
  • Phylogenetic species
  • Species complex
  • Species limits
  • Taxonomy