Skip to main content

Virulence factors of Botrytis cinerea

Abstract

Botrytis cinerea is responsible for gray mold disease in more than 200 host plant species. The infection of host plants is mediated by numerous extracellular enzymes, proteins and metabolites. Each of these compounds may play a role in different stages of the infection process. Cell wall-degrading enzymes may facilitate the penetration into the host surface, while toxins, oxalic acid and reactive oxygen species may contribute to killing of the host cells. Cell wall-degrading enzymes contribute to the conversion of host tissue into fungal biomass. On the other hand, B. cinerea infection induces biosynthesis of phytoalexins. Therefore, the ability to overcome a wide spectrum of phytoalexins contributes to the pathogenicity of the fungus with a broad host range. The cloning of the corresponding genes has facilitated studies on gene expression and targeted mutagenesis. This review gives an overview of the research performed on virulence factors that play the roles in pathogenesis.

This is a preview of subscription content, access via your institution.

References

  1. Bar-Nun N, Mayer AM (1990) Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry 29:787–791

    CAS  Article  Google Scholar 

  2. Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211

    CAS  PubMed  Google Scholar 

  3. Benito EP, ten Have A, van’t Klooster JW, van Kan JAL (1998) Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. Euro J Plant Pathol 104:207–220

    Google Scholar 

  4. Bennett MH, Gallagher MDH, Bestwick CS, Rossiter JT, Mansfield JW (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 44:321–333

    CAS  Article  Google Scholar 

  5. Brito N, Espino JJ, Gonzalez C (2006) The endo-β-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    CAS  PubMed  Article  Google Scholar 

  6. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Clark CA, Lorbeer JW (1976) Comparative histopathology of Botrytis squamosa and B. cinerea on onion leaves. Phytopathology 66:1279–1289

    Article  Google Scholar 

  8. Cole L, Dewey FM, Hawes CR (1996) Infection mechanisms of Botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycol Res 100:277–286

    Article  Google Scholar 

  9. Cole L, Dewey FM, Hawes CR (1998) Immunocytochemical studies of the infection mechanisms of Botrytis fabae II. Host cell wall breakdown. New Phytol 139:611–622

    CAS  Article  Google Scholar 

  10. Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409

    CAS  Article  Google Scholar 

  11. Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    CAS  PubMed  Article  Google Scholar 

  12. Comménil P, Belingheri L, Sancholle M, Dehorter B (1995) Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids 30:351–356

    PubMed  Article  Google Scholar 

  13. Comménil P, Belingheri L, Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiol Mol Plant Pathol 52:1–14

    Article  Google Scholar 

  14. Comménil P, Belingheri L, Bauw G, Dehorter B (1999) Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle. Physiol Mol Plant Pathol 55:37–43

    Article  Google Scholar 

  15. Cutler HG, Jacyno JM, Harwood JS, Dulik D, Goodrich PD, Roberts RG (1993) Botcinolide: a biologically active natural product from Botrytis cinerea. Biosci Biotechnol Biochem 57:1980–1982

    CAS  Article  Google Scholar 

  16. Deighton N, Muckenshnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    CAS  PubMed  Article  Google Scholar 

  17. Diaz J, ten Have A, van Kan JAL (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341–1351

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Dickman MB, Mitra A (1992) Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol Mol Plant Pathol 41:255–263

    Article  Google Scholar 

  19. Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal apoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    CAS  PubMed  Article  Google Scholar 

  20. Durán-Patrón R, Hernández-Galán R, Collado IG (2000) Secobotrytriendiol and related sesquiterpenoids: new phytotoxic metabolites from Botrytis cinerea. J Nat Prod 63:182–184

    PubMed  Article  Google Scholar 

  21. Espino JJ, Brito N, Noda J, González C (2005) Botrytis cinerea endo-β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol 66:213–221

    CAS  Article  Google Scholar 

  22. Favaron F, Sella L, D’Ovidio R (2004) Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol Plant Microbe Interact 17:1402–1409

    CAS  PubMed  Article  Google Scholar 

  23. Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    CAS  PubMed  Article  Google Scholar 

  24. Frías M, González C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–495

    PubMed  Article  Google Scholar 

  25. Gentile AC (1954) Carbohydrate metabolism and oxalic acid synthesis by Botrytis cinerea. Plant Physiol 29:257–261

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37:179–191

    CAS  Article  Google Scholar 

  27. Gonen L, Viterbo A, Cantone F, Staples RC, Mayer AM (1996) Effect of cucurbitacins on mRNA coding for laccase in Botrytis cinerea. Phytochemistry 42:321–324

    CAS  PubMed  Article  Google Scholar 

  28. Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    CAS  PubMed  Article  Google Scholar 

  29. Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Purification and characterization of an intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb Technol 17:900–906

    CAS  Article  Google Scholar 

  30. Hayashi K, Schoonbeek H, De Waard MA (2002) Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pestic Biochem Physiol 73:110–121

    CAS  Article  Google Scholar 

  31. Johnston DJ, Williamson B (1992) Purification and characterization of four polygalacturonases from Botrytis cinerea. Mycol Res 96:343–349

    CAS  Article  Google Scholar 

  32. Kapat A, Zimand G, Elad Y (1998) Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol Res 102:1017–1024

    CAS  Article  Google Scholar 

  33. Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, van Kan JAL (2005a) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    CAS  PubMed  Article  Google Scholar 

  34. Kars I, Wagemakers CAM, McCalman M, van Kan JAL (2005b) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641–652

    CAS  PubMed  Article  Google Scholar 

  35. Kerssies A, Frinking HD (1996) Relations between glasshouse climate and dry weight of petals, epicuticular wax, cuticle, pre-harvest flowering period and susceptibility to Botrytis cinerea of gerbera and rose flowers. Eur J Plant Pathol 102:257–263

    Article  Google Scholar 

  36. Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21:605–612

    CAS  PubMed  Article  Google Scholar 

  37. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    CAS  PubMed  Article  Google Scholar 

  38. Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, pathology and control. Springer, Dordrecht, pp 119–141

    Google Scholar 

  39. Mansfield JW, Richardson A (1981) The ultrastructure of interactions between Botrytis species and broad bean leaves. Physiol Plant Pathol 19:41–48

    Article  Google Scholar 

  40. Mansfield JW, Porter AEA, Smallman RV (1980) Dihydrowyerone derivatives as components of the furanoacetylenic phytoalexin response of tissues of Vicia faba. Phytochemistry 19:1057–1061

    CAS  Article  Google Scholar 

  41. Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43:359–366

    CAS  PubMed  Article  Google Scholar 

  42. Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22:339–345

    CAS  Article  Google Scholar 

  43. Movahedi S, Heale JB (1990a) Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol Mol Plant Pathol 36:289–302

    CAS  Article  Google Scholar 

  44. Movahedi S, Heale JB (1990b) The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex Pers. Physiol Mol Plant Pathol 36:303–324

    CAS  Article  Google Scholar 

  45. Nakajima M, Suzuki J, Hosaka T, Hibi T, Akutsu K (2001) Functional analysis of an ATP-binding cassette transporter gene in Botrytis cinerea by gene disruption. J Gen Plant Pathol 67:212–214

    CAS  Article  Google Scholar 

  46. Noda J, Brito N, González C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    PubMed Central  PubMed  Article  Google Scholar 

  47. Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564

    CAS  PubMed  Article  Google Scholar 

  48. Reignault P, Mercier M, Bompeix G, Boccara M (1994) Pectin methylesterase from Botrytis cinerea: physiological, biochemical and immunochemical studies. Microbiology 140:3249–3255

    CAS  Article  Google Scholar 

  49. Reino JL, Hernández-Galán R, Durán-Patrón R, Collado IG (2004) Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152:563–566

    CAS  Article  Google Scholar 

  50. Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257–267

    CAS  PubMed  Article  Google Scholar 

  51. Rha E, Park HJ, Kim MO, Chung YR, Lee CW, Kim JW (2001) Expression of exopolygalacturonases in Botrytis cinerea. FEMS Microbiol Lett 201:105–109

    CAS  PubMed  Article  Google Scholar 

  52. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  PubMed  Article  Google Scholar 

  53. Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systemis in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    CAS  PubMed  Article  Google Scholar 

  54. Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    CAS  PubMed  Article  Google Scholar 

  55. Rossi FR, Gárriz A, Marina M, Romero FM, Gonzalez ME, Collado IG, Pieckenstain FL (2011) The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant Microbe Interact 24:888–896

    CAS  PubMed  Article  Google Scholar 

  56. Salinas J (1992) Function of cutinolytic enzymes in the infection of gerbera flowers by Botrytis cinerea. Ph.D. dissertation, University of Utrecht, Netherlands

  57. Salinas J, Verhoeff K (1995) Microscopical studies of the infection of gerbera flowers by Botrytis cinerea. Eur J Plant Pathol 101:377–386

    Article  Google Scholar 

  58. Sasaki I, Nagayama H (1994) β-glucosidase from Botrytis cinerea: its relation to the pathogenicity of this fungus. Biosci Biotechnol Biochem 58:616–620

    CAS  Article  Google Scholar 

  59. Sasaki I, Nagayama H (1996) β-glucosidase of Botrytis cinerea: its involvement in the pathogenicity of this fungus. Biosci Biotechnol Biochem 60:54–56

    CAS  Article  Google Scholar 

  60. Schaller A, Ryan CA (1996) Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol 31:1073–1077

    CAS  PubMed  Article  Google Scholar 

  61. Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant Microbe Interact 15:1165–1172

    CAS  PubMed  Article  Google Scholar 

  62. Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, van Kan JAL (2002a) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol Plant Pathol 3:227–238

    CAS  PubMed  Article  Google Scholar 

  63. Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JAL (2002b) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43:883–894

    CAS  PubMed  Article  Google Scholar 

  64. Schouten A, van Baarlen P, van Kan JAL (2008) Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytol 177:493–505

    CAS  PubMed  Google Scholar 

  65. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819

    PubMed  Article  Google Scholar 

  66. Shlezinger N, Doron A, Sharon A (2011a) Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity. Biochem Soc Trans 39:1493–1498

    CAS  PubMed  Article  Google Scholar 

  67. Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, Sharon A (2011b) Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 7:e1002185

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  68. Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    CAS  PubMed  Article  Google Scholar 

  69. Staples RC, Mayer AM (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol Lett 134:1–7

    CAS  Article  Google Scholar 

  70. Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Métraux J-P, Schoonbeek H (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510

    CAS  PubMed  Article  Google Scholar 

  71. Sutton JC, Rowell PM, James TDW (1984) Effects of leaf wax, wetness duration and temperature on infection of onion leaves by Botrytis squamosa. Phytoprotection 65:65–68

    Google Scholar 

  72. Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H (2006) Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69:722–725

    CAS  PubMed  Article  Google Scholar 

  73. ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    PubMed  Article  Google Scholar 

  74. ten Have A, Oude Breuil W, Wubben JP, Visser J, van Kan JAL (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33:97–105

    PubMed  Article  Google Scholar 

  75. ten Have A, Tenberge KB, Benen JAE, Tudzynski P, Visser J, van Kan JAL (2002) The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: Kempken F (ed) The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research XI. Agricultural applications. Springer, Berlin, pp 341–358

    Google Scholar 

  76. ten Have A, Dekkers E, Kay J, Phylip LH, van Kan JAL (2004) An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150:2475–2489

    PubMed  Article  Google Scholar 

  77. ten Have A, Espino JJ, Dekkers E, Van Sluyter SC, Brito N, Kay J, González C, van Kan JAL (2010) The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47:53–65

    PubMed  Article  Google Scholar 

  78. Tenberge KB (2004) Morphology and cellular organization in Botrytis interactions with plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, pathology and control. Springer, Dordrecht, pp 67–84

    Google Scholar 

  79. Tobias RB, Conway W, Sams C (1993) Polygalacturonase isozymes from Botrytis cinerea grown on apple pectin. Biochem Mol Biol Int 30:829–837

    CAS  PubMed  Google Scholar 

  80. Urbanek H, Zalewska-Sobczak J (1984) Multiplicity of cell wall degrading glycosidic hydrolases produced by apple infecting Botrytis cinerea. J Phytopathol 110:261–271

    CAS  Article  Google Scholar 

  81. Valette-Collet O, Cimerman A, Reinault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe Interact 16:360–367

    CAS  PubMed  Article  Google Scholar 

  82. van Baarlen P, Woltering EJ, Staats M, van Kan JAL (2007) Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41–54

    Article  Google Scholar 

  83. van Kan JAL, van’t Klooster JW, Wagemakers CAM, Dees DCT, van der Vlugt-Bergmans CJB (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact 10:30–38

    PubMed  Article  Google Scholar 

  84. van den Heuvel J, Waterreus LP (1985) Pectic enzymes associated with phosphate-stimulated infection of French bean leaves by Botrytis cinerea. Neth J Plant Pathol 91:253–264

    Article  Google Scholar 

  85. van der Vlugt-Bergmans CJB, Wagemakers CAM, van Kan JAL (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10:21–29

    PubMed  Article  Google Scholar 

  86. Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    CAS  PubMed  Article  Google Scholar 

  87. Verhoeff K, Warren JM (1972) In vitro and in vivo production of cell wall degrading enzymes by Botrytis cinerea from tomato. Neth J Plant Pathol 78:179–185

    CAS  Article  Google Scholar 

  88. Verhoeff K, Leeman M, van Peer R, Posthuma L, Schot N, van Eijk GW (1988) Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol 122:327–336

    CAS  Article  Google Scholar 

  89. Vermeulen T, Schoonbeek H, De Waard MA (2001) The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pest Manag Sci 57:393–402

    CAS  PubMed  Article  Google Scholar 

  90. Viterbo A, Yagen B, Mayer AM (1992) Cucurbitacins, ‘attack’ enzymes and laccase in Botrytis cinerea. Phytochemistry 32:61–65

    CAS  Article  Google Scholar 

  91. Viterbo A, Staples RC, Yagen B, Mayer AM (1994) Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry 35:1137–1142

    CAS  Article  Google Scholar 

  92. Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res 99:1303–1310

    Article  Google Scholar 

  93. Wubben JP, Mulder W, ten Have A, van Kan JAL, Visser J (1999) Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol 65:1596–1602

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masami Nakajima.

About this article

Cite this article

Nakajima, M., Akutsu, K. Virulence factors of Botrytis cinerea . J Gen Plant Pathol 80, 15–23 (2014). https://doi.org/10.1007/s10327-013-0492-0

Download citation

Keywords

  • Botrytis cinerea
  • Extracellular enzymes
  • Penetration
  • Phytotoxic activity
  • Programmed cell death
  • Virulence factor