Skip to main content

Threats to Japanese agriculture from newly emerged plant viruses and viroids

Abstract

International trade is one of the main ways by which a species can expand its geographical range. Since the beginning of the twenty-first century, the worldwide distribution of many pests has increased through the international circulation of crop seeds and seedlings. In this review, viruses and viroids that have invaded Japan since 2000 are described in order of their prevalence. Measures to prevent invasion by such viruses and viroids and protect agricultural production in Japan from alien pests are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Atanasoff D (1932) Plum pox. A new virus disease. Yearbook Univ Sofía Fac Agric Silvic 11:49–69

    Google Scholar 

  2. Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    CAS  PubMed  Article  Google Scholar 

  3. Duarte LML, Rivas EB, Alexandre MAV, de Ávila AC, Nagata T, Chagas CM (1995) Chrysanthemum stem necrosis caused by a possible novel tospovirus. J Phytopathol 143:569–571

    Article  Google Scholar 

  4. Eiras M, Resende RO, Missiaggia AA, de Ávila AC (2001) RT-PCR and dot blot hybridization methods for a universal detection of tospoviruses. Fitopatol Bras 26:170–175

    CAS  Article  Google Scholar 

  5. Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20:853–869

    Article  Google Scholar 

  6. Fujiwara Y, Saito N, Kasugai K, Tsukamoto T, Aihara F (2011) Occurrence and eradication strategies of Plum pox virus in Japan. Acta Hortic 899:165–170

    Google Scholar 

  7. Genda Y, Sato K, Nunomura O, Hirabayashi T, Tsuda S (2011) Immunolocalization of Pepper mild mottle virus in developing seeds and seedlings of Capsicum annuum. J Gen Plant Pathol 77:201–208

    CAS  Article  Google Scholar 

  8. German TL, Ullman DE, Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu Rev Phytopathol 30:315–348

    CAS  PubMed  Article  Google Scholar 

  9. Gildow F, Damsteegt V, Stone A, Schneider W, Luster D, Levy L (2004) Plum pox in North America: identification of aphid vectors and a potential role for fruit in virus spread. Phytopathology 94:868–874

    PubMed  Article  Google Scholar 

  10. Greer L, Diver S (2000) Greenhouse IPM: Sustainable thrips control. In: Peat management technical notes. Appropriate Technology Transfer for Rural Areas. Available via DIALOG, https://attra.ncat.org/attra-pub/summaries/summary.php?pub=50. Cited 20 Jun 2013

  11. Gyoutoku Y, Okazaki S, Furuta A, Etoh T, Mizobe M, Kuno K, Hayashida S, Okuda M (2009) Chlorotic yellows disease of melon caused by Cucurbit chlorotic yellows virus, a new crinivirus (in Japanese with English abstract). Jpn J Phyopathol 75:109–111

    Article  Google Scholar 

  12. Hartono S, Natsuaki T, Sayama H, Atarashi H, Okuda S (2003) Yellowing disease of tomatoes caused by Tomato infectious chlorosis virus newly recognized in Japan. J Gen Plant Pathol 69:61–64

    CAS  Article  Google Scholar 

  13. Hirota T, Natsuaki T, Murai T, Nishigawa H, Niibori K, Goto K, Hartono S, Suastika G, Okuda S (2010) Yellowing disease of tomato caused by Tomato chlorosis virus newly recognized in Japan. J Gen Plant Pathol 76:168–171

    Article  Google Scholar 

  14. James T, Mulholland V, Jeffries C, Chard J (2008) First report of Tomato chlorotic dwarf viroid infecting commercial petunia stocks in the United Kingdom. Plant Pathol 57:400

    Article  Google Scholar 

  15. Karasev AV (2000) Genetic diversity and evolution of closteroviruses. Annu Rev Phytopathol 38:293–324

    CAS  PubMed  Article  Google Scholar 

  16. Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  17. Kitamura K (ed) (2010) The food self-sufficiency rate for FY2009. In: MAFF update No. 730. The Ministry of Agriculture, Forestry and Fishries of Japan. Available via DIALOG, http://www.maff.go.jp/e/maffud/2010/730.html. Cited 20 Jun 2013

  18. Kiyonaga T, Watanabe T, Miyamoto K, Suzuki Y (1997) Varietal differences in the brown planthopper egg mortality caused by antibiotic response of rice plants (in Japanese). Kyushu Agric Res 59:75

    Google Scholar 

  19. Kubota K, Usugi T, Tsuda S (2011) Production of antiserum and immunodetection of Cucurbit chlorotic yellows virus, a novel whitefly-transmitted crinivirus. J Gen Plant Pathol 77:116–120

    CAS  Article  Google Scholar 

  20. Kubota K, Usugi T, Tomitaka Y, Matsushita Y, Higashiyama M, Kosaka Y, Tsuda S (2012) Characterization of Rehmannia mosaic virus isolated from chili pepper (Capsicum annuum) in Japan. J Gen Plant Pathol 78:43–48

    CAS  Article  Google Scholar 

  21. Labonne G, Yvon M, Quiot JB, Avinert L, Llacer G (1995) Aphids as potential vectors of Plum pox virus: comparison of methods of testing and epidemiological consequences. Acta Hortic 386:207–217

    Google Scholar 

  22. Liao JY, Hu CC, Kao JL, Deng T-C (2007) Identification of Tobacco mosaic virus infecting Rehmannia glutinosa (in Chinese with English summary). Plant Pathol Bull 16:61–69

    CAS  Google Scholar 

  23. Maejima K, Hoshi H, Hashimoto M, Himeno M, Kawanishi T, Komatsu K, Yamaji Y, Hamamoto H, Namba S (2010) First report of plum pox virus infecting Japanese apricot (Prunus mume Sieb. et Zucc.) in Japan. J Gen Plant Pathol 76:229–231

    Article  Google Scholar 

  24. Maejima K, Himeno M, Komatsu K, Takinami Y, Hashimoto M, Takahashi S, Yamaji Y, Oshima K, Namba S (2011) Molecular epidemiology of Plum pox virus in Japan. Phytopathology 101:567–574

    PubMed  Article  Google Scholar 

  25. Matsumura M, Sakai J (2011) Occurrence of a new disease caused by Southern rice black-streaked dwarf virus transmitted by the whitebacked planthopper (in Japanese). Plant Prot 65:244–246

    Google Scholar 

  26. Matsushita Y, Kanda A, Usugi T, Tsuda S (2008) First report of a Tomato chlorotic dwarf viroid disease on tomato plants in Japan. J Gen Plant Pathol 74:182–184

    CAS  Article  Google Scholar 

  27. Matsushita Y, Usugi T, Tsuda S (2009) Host range and properties of Tomato chlorotic dwarf viroid. Eur J Plant Pathol 124:349–352

    Article  Google Scholar 

  28. Matsushita Y, Usugi T, Tsuda S (2010) Development of a multiplex RT-PCR detection and identification system for Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. Eur J Plant Pathol 128:165–170

    CAS  Article  Google Scholar 

  29. Matsuura S, Kubota K, Okuda M (2007) First report of Chrysanthemum stem necrosis virus on Chrysanthemums in Japan. Plant Dis 91:468

    Article  Google Scholar 

  30. Matsuura S, Matsushita Y, Usugi T, Tsuda S (2010) Disinfection of Tomato chlorotic dwarf viroid by chemical and biological agents. Crop Prot 29:1157–1161

    CAS  Article  Google Scholar 

  31. Misumi T (2011) Treatments and techniques for pest control on the plant quarantine of Japan (in Japanese with English abstract). Urban Pest Manag 1:137–145

    Google Scholar 

  32. Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89

    CAS  PubMed  Article  Google Scholar 

  33. Mumford RA, Jarvis B, Morris J, Blockley A (2003) First report of Chrysanthemum stem necrosis virus (CSNV) in the UK. Plant Pathol 52:779

    Article  Google Scholar 

  34. Nagata T, de Ávila AC (2000) Transmission of Chrysanthemum stem necrosis virus, a recently discovered tospovirus, by two thrips species. J Phytopathol 148:123–125

    Article  Google Scholar 

  35. Nagata T, Resende RO, Kitajima EW, Costa H, Inoue-Nagata AK, de Ávila AC (1998) First report of natural occurrence of Zucchini lethal chlorosis tospovirus on cucumber and Chrysanthemum stem necrosis tospovirus on tomato in Brazil. Plant Dis 82:1403

    Article  Google Scholar 

  36. Nagata T, Almeida ACL, Resende RO, de Ávila AC (2004) The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathol 53:136–140

    Article  Google Scholar 

  37. NARO Institute of Vegetable and Tea Science (ed) (2011) The state and task of the cultivation with graft seedlings of vegetables (in Japanese). In: Research data collection no. 7. NARO Institute of Vegetable and Tea Science, Mie

  38. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215

    CAS  PubMed  Article  Google Scholar 

  39. Németh MV (1986) Virus, mycoplasma and rickettsia diseases of fruit trees. Martinus Nijhoff, Dordrecht, pp 463–479

  40. Ohnishi J, Kitamura T, Terami F, Honda K (2011) Co-transmission of Tomato yellow leaf curl virus (TYLCV)-Mld and TYLCV-IL by the whitefly Bemisia tabaci. J Gen Plant Pathol 77:54–59

    Article  Google Scholar 

  41. Okazaki S, Okuda M, Sakurai T (2007) Hyposensitivity to emamectin benzoate and chlorfenapyr in distinct populations of Frankliniella occidentalis collected in Oita Prefecture. Kyushu Pl Prot Res 53:66–70

    CAS  Article  Google Scholar 

  42. Okuda M, Okazaki S, Yamasaki S, Okuda S, Sugiyama M (2010) Host range and complete genome sequence of Cucurbit chlorotic yellows virus, a new member of the genus Crinivirus. Phytopathology 100:560–566

    CAS  PubMed  Article  Google Scholar 

  43. Otuka A, Matsumura M, Watanabe T, van Dinh T (2008) A migration analysis for rice planthoppers, Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae), emigrating from northern Vietnam from April to May. Appl Entomol Zool 43:527–534

    Article  Google Scholar 

  44. Phytopathological Society of Japan (ed) (2000) Common names of plant diseases in Japan (in Japanese). Japan Plant Protection Association, Tokyo, p 248

  45. Ravnikar M, Vozelj N, Mavriè I, Švigelj SD, Zupanèiè M, Petroviè N (2003) Detection of Chrysanthemum stem necrosis virus and Tomato spotted wilt virus in chrysanthemum. In: Abstracts 8th International Congress of Plant Pathology, Christchurch, New Zealand

  46. Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events—implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104

    Google Scholar 

  47. Serçe ÇU, Candresse T, Svanella-Dumas L, Krizbai L, Gazel M, Çağlayan K (2009) Further characterization of a new recombinant group of Plum pox virus isolates, PPV-T, found in orchards in the Ankara province of Turkey. Virus Res 142:121–126

    PubMed  Article  Google Scholar 

  48. Shiraishi T, Maejima K, Komatsu K, Hashimoto M, Okano Y, Kitazawa Y, Yamaji Y, Namba S (2013) First report of tomato chlorotic dwarf viroid isolated from symptomless petunia plants (Petunia spp.) in Japan. J Gen Plant Pathol 79:214–216

    Article  Google Scholar 

  49. Singh RP, Nie X, Singh M (1999) Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids. J Gen Virol 80:2823–2828

    CAS  PubMed  Google Scholar 

  50. Singh RP, Dilworth AD, Baranwal VK, Gupta KN (2006) Detection of Citrus exocortis viroid, Iresine viroid, and Tomato chlorotic dwarf viroid in new ornamental host plants in India. Plant Dis 90:1457

    Article  Google Scholar 

  51. Sogawa K (1991) Super-susceptibility to the white-backed planthopper in japonica-indica hybrid rice (in Japanese). Kyushu Agric Res 53:92

    Google Scholar 

  52. Suzuki Y, Seino Y (1997) Ovicidal response of rice plants against rice planthoppers (in Japanese). Plant Prot 51:451–454

    Google Scholar 

  53. Takeshita M, Nagai N, Okuda M, Matsuura S, Okuda S, Furuya N, Tsuchiya K (2011) Molecular and biological characterization of Chrysanthemum stem necrosis virus isolates from distinct regions in Japan. Eur J Plant Pathol 131:9–14

    CAS  Article  Google Scholar 

  54. Tokumaru S, Hayashida Y (2010) Pesticide susceptibility of Q-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Jpn J Appl Entomol Zool 54:13–21

    Article  Google Scholar 

  55. Tsushima T, Murakami S, Ito H, He Y-H, Raj APC, Sano T (2011) Molecular characterization of Potato spindle tuber viroid in dahlia. J Gen Plant Pathol 77:253–256

    CAS  Article  Google Scholar 

  56. Uchibori M, Hirata A, Suzuki M, Ugaki M (2013) Tomato yellow leaf curl virus accumulates in vesicle-like structures in descending and ascending midgut epithelial cells of the vector whitefly, Bemisia tabaci, but not in those of nonvector whitefly Trialeurodes vaporariorum. J Gen Plant Pathol 79:115–122

    CAS  Article  Google Scholar 

  57. Ueda S, Brown JK (2006) First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 34:405–411

    CAS  Article  Google Scholar 

  58. Ueda S, Takeuchi S, Okabayashi M, Hanada K, Tomimura K, Iwanami T (2005) Evidence of a new Tomato yellow leaf curl virus in Japan and its detection using PCR. J Gen Plant Pathol 71:319–325

    CAS  Article  Google Scholar 

  59. Verhoeven JTJ, Roenhorst JW, Cortes I, Peters D (1996) Detection of a novel tospovirus in chrysanthemum. Acta Hortic 432:44–53

    Google Scholar 

  60. Verhoeven JTJ, Jansen CCC, Werkman AW, Roenhorst JW (2007) First report of Tomato chlorotic dwarf viroid in Petunia hybrida from the United States of America. Plant Dis 91:324

    Article  Google Scholar 

  61. Wang Q, Yang J, Zhou G-H, Zhang H-M, Chen J-P, Adams MJ (2010) The complete genome sequence of two isolates of Southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. J Phytopathol 158:733–737

    Article  Google Scholar 

  62. Whitfield AE, Ullman DE, German TL (2005) Tospovirus–thrips interactions. Annu Rev Phytopathol 43:459–489

    CAS  PubMed  Article  Google Scholar 

  63. Yamashita S, Doi Y, Yora K, Yoshino M (1979) Cucumber yellows virus: Its transmission by the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and the yellowing disease of cucumber and muskmelon caused by the virus. Ann Phytopath Soc Jpn 45:484–496

  64. Zhang ZC, Zhang LF, Qiao Q, Wang YJ, Jin XL (2004) Identification of viral pathogens of Rehmannia glutinosa disease in Henan Province (in Chinese). Acta Phytopathol Sin 34:395–399

    Google Scholar 

  65. Zhou GH, Wen JJ, Cai DJ, Li P, Xu DL, Zhang SG (2008) Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family Reoviridae. Chin Sci Bull 53:3677–3685

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the Plant Protection Division in the Food Safety and Consumer Affairs Bureau and the Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries for useful comments and discussion about plant protection. We thank Kenji Kubota for images of CCYV and whitefly and critical reading of the article, Reiko Kozuka and Shohei Matsuura for the image of TCDVd-infected tomato plants in a field, and Yoshitaka Kosaka for images of RheMV-infected chili pepper plants in a field and a damaged fruit.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shinya Tsuda.

About this article

Cite this article

Tsuda, S., Sano, T. Threats to Japanese agriculture from newly emerged plant viruses and viroids. J Gen Plant Pathol 80, 2–14 (2014). https://doi.org/10.1007/s10327-013-0475-1

Download citation

Keywords

  • Quarantine
  • Seeds and seedlings
  • Trading
  • Alien pest
  • Plant viruses and viroids
  • Risk management