Skip to main content

An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans

Abstract

Six4, a small protein secreted by Fusarium oxysporum f. sp. lycopersici (Fol) in tomato xylem sap during infection, triggers Fol race 1-specific resistance (I) in tomato. SIX4 is regarded as an avirulence gene. Although SIX4 is considered unique to Fol race 1, we detected this gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans (Foc) by PCR. Because the genes from Foc and SIX4 in Fol were >99 % identical at the nucleotide level, the Foc gene was designated FocSIX4. The expression of FocSIX4 was detected by RT-PCR in stems and roots of cabbage 8 days after infection with Foc. In contrast with Fol, disruption of FocSIX4 in Foc did not increase virulence to Foc-resistant cabbage cvs. Shutoku-SP and Koikaze. On the contrary, the disruptants had reduced virulence not only on Foc-resistant cultivars but also on Foc-susceptible cv. Shikidori. These results suggested that FocSIX4 is involved in virulence, but not in avirulence, in the cabbage yellows fungus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alfano JR (2009) Roadmap for future research on plant pathogen effectors. Mol Plant Pathol 10:805–813

    PubMed  Article  CAS  Google Scholar 

  2. Arie T (2010) Phylogeny and phytopathogenicity mechanisms of soilborne Fusarium oxysporum. J Gen Plant Pathol 76:403–405

    Article  Google Scholar 

  3. Armstrong GM, Armstrong JK (1981) Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 391–399

    Google Scholar 

  4. Blank LM (1937) Fusarium resistance in Wisconsin all seasons cabbage. J Agr Res 55:497–510

    Google Scholar 

  5. Eck RV, Dayhoff MO (1966) Dayhoff MO (ed.) Atlas of protein sequence and structure 1966. National Biomedical Research Foundation, Silver Spring, pp 161–169

  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    PubMed  Article  CAS  Google Scholar 

  7. Fich WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111:223–257

    Article  Google Scholar 

  8. Flor HH (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  9. Houterman PM, Cornelissen BJC, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061

    PubMed  Article  Google Scholar 

  10. Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJC, Takken FLW, Rep M (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58:970–978

    PubMed  Article  CAS  Google Scholar 

  11. Inami K, Yoshioka-Akiyama C, Morita Y, Yamasaki M, Teraoka T, Arie T (2012) A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: inactivation of avirulence gene AVR1 by transposon insertion. PLoS ONE 7:e44101

    PubMed  Article  CAS  Google Scholar 

  12. Iskandar HM, Simpson RS, Casu RE, Bonnett GD, Maclean DJ, Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression. Plant Mol Biol Rep 22:325–337

    Article  CAS  Google Scholar 

  13. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  Article  CAS  Google Scholar 

  14. Kashiwa T, Inami K, Fujinaga M, Ogiso H, Teraoka T, Arie T (2010) Cabbage yellows fungus (Fusarium oxysporum f. sp. conglutinans) possesses an avirulence gene SIX4 of tomato wilt fungus (F. oxysporum f. sp. lycopersici) race 1 (abstract in Japanese). Jpn J Phytopathol 76: 232

  15. Kawabe M, Mizutani K, Yoshida T, Teraoka T, Yoneyama K, Yamaguchi I, Arie T (2004) Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici. J Gen Plant Pathol 70:16–20

    Article  CAS  Google Scholar 

  16. Kawabe M, Kobayashi Y, Okada G, Yamaguchi I, Teraoka T, Arie T (2005) Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. J Gen Plant Pathol 71:263–272

    Article  CAS  Google Scholar 

  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  18. Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:e2

    PubMed  Article  Google Scholar 

  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948

  20. Lievens B, Houterman PM, Rep M (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol Lett 300:201–215

    PubMed  Article  CAS  Google Scholar 

  21. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    PubMed  Article  CAS  Google Scholar 

  22. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant Microbe Interact 14:580–584

    PubMed  Article  CAS  Google Scholar 

  23. Saitoh K, Togashi K, Arie T, Teraoka T (2006) A simple method for a mini-preparation of fungal DNA. J Gen Plant Pathol 72:348–350

    Article  CAS  Google Scholar 

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  25. Schoffelmeer EA, Vossen JH, van Doorn AA, Cornelissen BJ, Haring MA (2001) FEM1, a Fusarium oxysporum glycoprotein that is covalently linked to the cell wall matrix and is conserved in filamentous fungi. Mol Genet Genomics 265:143–152

    PubMed  Article  CAS  Google Scholar 

  26. Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81

    Google Scholar 

  27. Stukenbrock EH, McDonald BA (2009) Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol Plant Microbe Interact 22:371–380

    PubMed  Article  CAS  Google Scholar 

  28. Takken FLW, Rep M (2010) The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314

    PubMed  Article  CAS  Google Scholar 

  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  Article  CAS  Google Scholar 

  30. Thatcher LF, Gardiner DM, Kazan K, Manners JM (2012) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 25:180–190

    PubMed  Article  CAS  Google Scholar 

  31. van der Does HC, Duyvesteijn RGE, Goltstein PM, van Schie CCN, Manders EMM, Cornelissen BJC, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45:1257–1264

    PubMed  Article  Google Scholar 

  32. Walker JC (1930) Inheritance of Fusarium resistance in cabbage. J Agr Res 40:721–745

    Google Scholar 

  33. Zheng SJ, van Dijk JP, Bruinsma M, Dicke M (2007) Sensitivity and speed of induced defense of cabbage (Brassica oleracea L.): dynamics of BoLOX expression patterns during insect and pathogen attack. Mol Plant Microbe Interact 20:1332–1345

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. T. Tsuge (Nagoya University) for providing pII99. The authors express their gratitude to Dr. K. L. Perry (Cornell University) for reviewing the manuscript. We thank Dr. M. Shimosaka (Shinsyu University) for providing fungal isolates. This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to TA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Arie.

Additional information

T. Kashiwa is a Research Fellow of Japan Society for the Promotion of Science.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 Detection of SIX4 by PCR with the primer set SIX4F/SIX4R from representative isolates of Fusarium oxysporum. 1, f. sp. conglutinans Cong:1-1; 2, f. sp. conglutinans MAFF 240329; 3, f. sp. conglutinans 07 GB-N1; 4, f. sp. lycopersici race 1 MAFF 305121; 5, f. sp. lycopersici race 2 JCM 12575; 6, f. sp. lycopersici race 3 Chz1-A; 7, f. sp. raphani MAFF 240328; 8, f. sp. rapae Ta-2; 9, f. sp. apii SUF 1017; 10, f. sp. batatas MAFF 103070; 11, f. sp. melonis NRRL 26406; 12, f. sp. radicis-lycopersici MAFF 103044; 13, f. sp. melongenae MAFF 103051; 14, f. sp. matthioli 880116a; 15, f. sp. niveum MAFF 305608; 16, nonpathogenic isolate from cabbage, 07C-A2; 17, nonpathogenic isolate from cabbage, 08C-3B. IGS (rDNA-IGS region) was amplified using a primer set FIGS11/FIGS12 (Table 2) as a control.

Supplementary Figure S2 Detection of SIX4 by genomic Southern hybridization from representative isolates of Fusarium oxysporum. Genomic DNA was digested with HindIII, separated in 0.8 % agarose gel and hybridized with a probe (734 bp) recognizing FocSIX4 (Fig. 1). 1, f. sp. conglutinans Cong:1-1; 2, f. sp. apii SUF 1017; 3, f. sp. batatas MAFF 103070; 4, f. sp. cucumerinum Rif-1; 5, f. sp. lycopersici race 1 MAFF 305121; 6, f. sp. lycopersici race 2 JCM 12575; 7, f. sp. lycopersici race 3 Chz1-A; 8, f. sp. matthioli 880116a; 9, f. sp. radicis-lycopersici MAFF 103044; 10, f. sp. rapae Ta-2; 11, a nonpathogenic isolate from cabbage, 07C-A2.

Supplementary material 1 (PPTX 1515 kb)

About this article

Cite this article

Kashiwa, T., Inami, K., Fujinaga, M. et al. An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans . J Gen Plant Pathol 79, 412–421 (2013). https://doi.org/10.1007/s10327-013-0471-5

Download citation

Keywords

  • Cabbage
  • Fusarium oxysporum
  • SIX4
  • Virulence gene
  • YR (yellows resistance)