Skip to main content
Log in

Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors

  • REVIEW FOR THE 100TH ANNIVERSARY
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

About 20 species of viruses belonging to five genera, Benyvirus, Furovirus, Pecluvirus, Pomovirus and Bymovirus, are known to be transmitted by plasmodiophorids. These viruses have all positive-sense, single-stranded RNA genomes that consist of two to five RNA components. Three species of plasmodiophorids are recognized as vectors: Polymyxa graminis, P. betae, and Spongospora subterranea. The viruses can survive in soil within the long-lived resting spores of the vector. There are biological and genetic variations in both virus and vector species. Many of the viruses are causal agents of important diseases in major crops such as rice, wheat, barley, rye, sugar beet, potato, and groundnut. Control is dependent on the development of resistant cultivars. During the last half century, several virus diseases have rapidly spread worldwide. For six major virus diseases, we address their geographical distribution, diversity, and genetic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe H, Tamada T (1986) Association of beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin. Ann Phytopathol Soc Jpn 52:235–247

    Google Scholar 

  • Abe H, Ui T (1986) Host range of Polymyxa betae Keskin strains in rhizomania-infested soils of sugar beet fields in Japan. Ann Phytopathol Soc Jpn 52:394–403

    Google Scholar 

  • Acosta-Leal R, Fawley MW, Rush CM (2008) Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology 376:60–68

    PubMed  CAS  Google Scholar 

  • Adams MJ, Swaby AG (1988) Factors affecting the production and motility of zoospores of Polymyxa graminis and their transmission of barley yellow mosaic virus (BaYMV). Ann Appl Biol 112:69–78

    Google Scholar 

  • Adams MJ, Antoniw JF, Mullins JGL (2001) Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus-encoded proteins. Arch Virol 146:1139–1153

    PubMed  CAS  Google Scholar 

  • Adams MJ, Antoniw JF, Kreuze J (2009) Virgaviridae: a new family of rod-shaped plant viruses. Arch Virol 154:1967–1972

    PubMed  CAS  Google Scholar 

  • Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to Beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204

    PubMed  CAS  Google Scholar 

  • Andika IB, Kondo H, Nishiguchi M, Tamada T (2012) The cysteine-rich proteins of beet necrotic yellow vein virus and tobacco rattle virus contribute to efficient suppression of silencing in roots. J Gen Virol 93:1841–1850

    PubMed  CAS  Google Scholar 

  • Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J (2013) Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 435:493–503

    PubMed  CAS  Google Scholar 

  • Asher MJC (1993) Rhizomania. In: Cooke DA, Scott RK (eds) The sugar beet crop: Science into practice. Chapman and Hall, London, pp 311–346

    Google Scholar 

  • Barr DJS (1979) Morphology and host range of Polymyxa graminis, Polymyxa betae and Ligniera pilorum from Ontario and some other areas. Can J Plant Pathol 1:85–94

    Google Scholar 

  • Barr KJ, Asher MJC (1992) The host range of Polymyxa betae in Britain. Plant Pathol 41:64–68

    Google Scholar 

  • Bass C, Hendley R, Adams MJ, Hammond-Kosack KE, Kanyuka K (2006) The Sbm1 locus conferring resistance to Soilborne cereal mosaic virus maps to a gene-rich region on 5DL in wheat. Genome 49:1140–1148

    PubMed  CAS  Google Scholar 

  • Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P (2002) The origin of rhizomania resistance in sugar beet. Euphytica 127:383–397

    CAS  Google Scholar 

  • Bornemann K, Varrelmann M (2013) Effect of sugar beet genotype on the Beet necrotic yellow vein virus P25 pathogenicity factor and evidence for a fitness penalty in resistance-breaking strains. Molec Plant Pathol 14:356–364

    CAS  Google Scholar 

  • Braselton JP (1995) Current status of the plasmodiophorids. Crit Rev Microbiol 21:263–275

    PubMed  CAS  Google Scholar 

  • Braselton JP (2001) Plasmodiophoromycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota VII, Part A. Systematics and evolution, Springer-Verlag, pp 81–91

    Google Scholar 

  • Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the plasmodiophorida and phagomyxida. Protist 152:43–51

    PubMed  CAS  Google Scholar 

  • Calvert EL, Harrison BD (1966) Potato mop-top, a soil-borne virus. Plant Pathol 15:134–139

    Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    PubMed  CAS  Google Scholar 

  • Canova A (1959) Appunti di patologica della barbabietola (in Italian). Inf Fitopatol 9:390–396

    Google Scholar 

  • Chen JP (1993) Occurrence of fungally transmitted wheat mosaic viruses in China. Ann Appl Biol 123:55–61

    Google Scholar 

  • Chen JP, Adams MJ, Zhu FT, Shi C, Chen H (1992) Responses of some Asian and European barley cultivars to UK and Chinese isolates of soil-borne barley mosaic viruses. Ann Appl Biol 121:631–639

    Google Scholar 

  • Chen JP, Adams MJ, Zhu FT, Wang ZQ, Chen J, Huang SZ, Zhang ZC (1996) Response of foreign barley cultivars to barley yellow mosaic virus at different sites in China. Plant Pathol 45:1117–1125

    Google Scholar 

  • Chen J, Shi N, Cheng Y, Diao A, Chen J, Wilson TMA, Antoniw JF, Adams MJ (1999) Molecular analysis of barley yellow mosaic virus isolates from China. Virus Res 64:13–21

    PubMed  CAS  Google Scholar 

  • Chen J, Chen JP, Yang JP, Cheng Y, Diao A, Adams MJ, Du J (2000) Differences in cultivar response and complete sequence analysis of two isolates of wheat yellow mosaic bymovirus in China. Plant Pathol 49:370–374

    CAS  Google Scholar 

  • Chiba S, Miyanishi M, Andika IB, Kondo H, Tamada T (2008) Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. J Gen Virol 89:1314–1323

    PubMed  CAS  Google Scholar 

  • Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T (2011) The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. Mol Plant-Microbe Interact 24:207–218

    PubMed  CAS  Google Scholar 

  • Chiba S, Hleibieh K, Delbianco A, Klein E, Ratti C, Ziegler-Graff V, Bouzoubaa S, Gilmer D (2013) The benyvirus RNA silencing suppressor is essential for long-distance movement, requires both Zn-finger and NoLS basic residues but not a nucleolar localization for its silencing-suppression activity. Mol Plant-Microbe Interact 26:168–181

    PubMed  CAS  Google Scholar 

  • D’Alonzo M, Delbianco A, Lanzoni C, Rubies-Autonell C, Gilmer D, Ratti C (2012) Beet soil-borne mosaic virus RNA-4 encodes a 32 kDa protein involved in symptom expression and in virus transmission through Polymyxa betae. Virology 423:187–194

    PubMed  Google Scholar 

  • Dessens JT, Meyer M (1996) Identification of structural similarities between putative transmission proteins of Polymyxa and Spongospora transmitted bymoviruses and furoviruses. Virus Genes 12:95–99

    PubMed  CAS  Google Scholar 

  • Diao A, Chen J, Ye R, Zheng T, Yu S, Antoniw JF, Adams MJ (1999) Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China. J Gen Virol 80:1141–1145

    PubMed  CAS  Google Scholar 

  • Dieryck B, Otto G, Doucet D, Legrève A, Delfosse P, Bragard C (2009) Seed, soil and vegetative transmission contribute to the spread of pecluviruses in Western Africa and the Indian sub-continent. Virus Res 141:184–189

    PubMed  CAS  Google Scholar 

  • Dieryck B, Weyns J, Doucet D, Bragard C, Legrève A (2011) Acquisition and transmission of Peanut clump virus by Polymyxa graminis on cereal species. Phytopathology 101:1149–1158

    PubMed  Google Scholar 

  • Driskel BA, Doss P, Littlefield LJ, Walker NR, Verchot-Lubicz J (2004) Soilborne wheat mosaic virus movement protein and RNA and wheat spindle streak mosaic virus coat protein accumulate inside resting spores of their vector, Polymyxa graminis. Mol Plant-Microbe Interact 17:739–748

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Pfeffer S, Fritsch C, Hemmer O, Voinnet O, Richards KE (2002) Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29:555–567

    PubMed  CAS  Google Scholar 

  • Gibbs AJ, Torronen M, Mackenzie AM, Wood JT, Armstrong JS, Kondo H, Tamada T, Keese PL (2011) The enigmatic genome of Chara australis virus. J Gen Virol 92:2679–2690

    PubMed  CAS  Google Scholar 

  • Grimmer MK, Trybush S, Hanley S, Francis SA, Karp A, Asher MJC (2007) An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theor Appl Genet 114:1151–1160

    PubMed  CAS  Google Scholar 

  • Han C, Li D, Xing Y, Zhu K, Tian Z, Cai Z, Yu J, Liu Y (2000) Wheat yellow mosaic virus widely occurring in wheat (Triticum aestivum) in China. Plant Dis 84:627–630

    Google Scholar 

  • Hao Y, Wang Y, Chen Z, Bland D, Li S, Brown-Guedira G, Johnson J (2012) A conserved locus conditioning Soil-borne wheat mosaic virus resistance on the long arm of chromosome 5D in common wheat. Mol Breed 30:1453–1464

    Google Scholar 

  • Hariri D, Meyer M (2007) A new furovirus infecting barley in France closely related to the Japanese soil-borne wheat mosaic virus. Eur J Plant Pathol 118:1–10

    CAS  Google Scholar 

  • Hariri D, Prud’homme H, Fouchard M, Boury G, Signoret P, Lapierre H (2001) Aubian wheat mosaic virus, a new soil-borne wheat virus emerging in France. Eur J Plant Pathol 107:775–785

    Google Scholar 

  • Hariri D, Meyer M, Prud’homme H (2003) Characterization of a new barley mild mosaic virus pathotype in France. Eur J Plant Pathol 109:921–928

    CAS  Google Scholar 

  • Hirano S, Kondo H, Maeda T, Tamada T (1999) Burdock mottle virus has a high genome similarity to beet necrotic yellow vein virus. In: Sherwood JL, Rush CM (eds) Proceedings of the fourth symposium of the international working group on plant viruses with fungal vectors. Monterey, California, USA, pp 33–36

  • Huth W, Adams MJ (1990) Barley yellow mosaic virus (BaYMV) and BaYMV-M: two different viruses. Intervirology 31:38–42

    PubMed  CAS  Google Scholar 

  • Ikata A, Kawai I (1940) Studies on wheat yellow mosaic disease (in Japanese). Noji Kairyo Shiryo 154:1–123

    Google Scholar 

  • Imoto M, Iwaki M, Tochihara H, Nakamura K, Hanada K (1986) The occurrence of potato mop top virus in Japan and its some properties (in Japanese with English abstract). Ann Phytopathol Soc Jpn 52:752–757

    Google Scholar 

  • Inouye T (1969) Viral pathogen of the wheat yellow mosaic disease (in Japanese). Nogaku Kenkyu 53:61–68

    Google Scholar 

  • Inouye T, Saito Y (1975) Barley yellow mosaic virus. CMI/AAB Descriptions of Plant Virus no. 143

  • Kai H, Takata K, Tsukazaki M, Furusho M, Baba T (2012) Molecular mapping of Rym17, a dominant and rym18 a recessive barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124:577–583

    PubMed  CAS  Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol Plant Pathol 4:393–406

    PubMed  CAS  Google Scholar 

  • Kanyuka K, McGrann G, Alhudaib K, Hariri D, Adams MJ (2004) Biological and sequence analysis of a novel European isolate of Barley mild mosaic virus that overcomes the barley rym5 resistance gene. Arch Virol 149:1469–1480

    PubMed  CAS  Google Scholar 

  • Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams MJ (2005) Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6:449–458

    PubMed  CAS  Google Scholar 

  • Kashiwazaki S, Ogawa K, Usugi T, Omura T, Tsuchizaki T (1989) Characterization of several strains of barley yellow mosaic virus. Ann Phytopath Soc Jpn 55:16–25

    Google Scholar 

  • Khan AA, Bergstrom GC, Nelson JC, Sorrells ME (2000) Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease. Genome 43:477–482

    PubMed  CAS  Google Scholar 

  • Kruse M, Koenig R, Hoffmann A, Kaufmann A, Commandeur U, Solovyev AG, Savenkov I, Burgermeister W (1994) Restriction fragment length polymorphism analysis of reverse transcription-PCR products reveals the existence of two major strain groups of beet necrotic yellow vein virus. J Gen Virol 75:1835–1842

    PubMed  CAS  Google Scholar 

  • Kühne T (2009) Soil-borne viruses affecting cereals—Known for long but still a threat. Virus Res 141:174–183

    PubMed  Google Scholar 

  • Kühne T, Shi N, Proeseler G, Adams MJ, Kanyuka K (2003) The ability of a bymovirus to overcome the rym4-mediated resistance in barley correlates with a codon change in the VPg coding region on RNA1. J Gen Virol 84:2853–2859

    PubMed  Google Scholar 

  • Kusume T, Tamada T, Hattori H, Tsuchiya T, Kubo K, Abe H, Namba S, Tsuchizaki T, Kishi K, Kashiwazaki S (1997) Identification of a new wheat yellow mosaic virus strain with specific pathogenicity towards major wheat cultivars grown in Hokkaido. Ann Phytopathol Soc Jpn 63:107–109

    Google Scholar 

  • Lang AS, Rise ML, Culley AI, Steward GF (2009) RNA viruses in the sea. FEMS Microbiol Rev 33:295–323

    PubMed  CAS  Google Scholar 

  • Latvala-Kilby S, Aura JM, Pupola N, Hannukkala A, Valkonen JPT (2009) Detection of Potato mop-top virus in potato tubers and sprouts: combinations of RNA2 and RNA3 variants and incidence of symptomless infections. Phytopathology 99:519–531

    PubMed  CAS  Google Scholar 

  • Lauber E, Bleykasten-Grosshans C, Erhardt M, Bouzoubaa S, Jonard G, Richards KE, Guilley H (1998) Cell-to-cell movement of beet necrotic yellow vein virus: I. Heterologous complementation experiments provide evidence for specific interactions among the triple gene block proteins. Mol Plant-Microbe Interact 11:618–625

    PubMed  CAS  Google Scholar 

  • Lee KJ, Choi MK, Lee WH, Rajkumar M (2006) Molecular analysis of Korean isolate of barley yellow mosaic virus. Virus Genes 32:171–176

    PubMed  Google Scholar 

  • Legrève A, Delfosse P, Vanpee B, Goffin A, Maraite H (1998) Differences in temperature requirements between Polymyxa sp. of Indian origin and Polymyxa graminis and Polymyxa betae from temperate areas. Eur J Plant Pathol 104:195–205

    Google Scholar 

  • Legrève A, Vanpee B, Delfosse P, Maraite H (2000) Host range of tropical and sub-tropical isolates of Polymyxa graminis. Eur J Plant Pathol 106:379–389

    Google Scholar 

  • Legrève A, Delfosse P, Maraite H (2002) Phylogenetic analysis of Polymyxa species based on nuclear 5.8S and internal transcribed spacers ribosomal DNA sequences. Mycological Res 106:138–147

    Google Scholar 

  • Liu HY, Sears JL, Lewellen RT (2005a) Occurrence of resistance-breaking Beet necrotic yellow vein virus of sugar beet. Plant Dis 89:464–468

    CAS  Google Scholar 

  • Liu W, Nie H, Wang S, Li X, He Z, Han C, Wang J, Chen X, Li L, Yu J (2005b) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657

    PubMed  CAS  Google Scholar 

  • Lubicz JV, Rush CM, Payton M, Colberg T (2007) Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol J 4:37

    PubMed  Google Scholar 

  • Lukhovitskaya NI, Yelina NE, Zamyatnin Jr. AA, Schepetilnikov MV, Solovyev AG, Sandgren M, Morozov SY, Valkonen JPT, Savenkov EI (2005) Expression, localization and effects on virulence of the cysteine-rich virus 8 kDa protein of Potato mop-top virus. J Gen Virol 86:2879–2889

  • Lyons R, Kutluk-Yilmaz ND, Powers S, Hammond-Kosack KE, Kanyuka K (2009) Characterization of two unusual features of resistance to soilborne cereal mosaic virus in hexaploid wheat: leakiness and gradual elimination of viral coat protein from infected root tissues. Mol Plant-Microbe Interact 22:560–574

    PubMed  CAS  Google Scholar 

  • Maccaferri M, Ratti C, Rubies-Autonell C, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti MC (2011) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm 2BS and minor loci. Theor Appl Genet 123:527–544

    PubMed  CAS  Google Scholar 

  • Manohar SK, Dollet M, Dubern J, Gargani D (1995) Studies on variability of peanut clump virus: symptomatology and serology. J Phytopathol 143:233–238

    Google Scholar 

  • Maoka T, Nakayama T, Hataya T (2006) Occurence of Potato mop-top virus in Tokachi region of Hokkaido (abstract in Japanese). Jpn J Phytopathol 72:253

    Google Scholar 

  • Maoka T, Nakayama T, Tanaka F, Shimizu M, Yasuoka S, Misawa T, Yamane T, Noguchi K, Hataya T, Mori M, Hosaka K (2011) The assumption of the spread of Potato mop-top virus in Japan based on field survey. In: Merz U (ed) Proceedings of the Eighth Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Louvain-la Neuve, Belgium. Plant Pathology, ETHZ, Zurich pp 69–72

  • McGrann GRD, Grimmer MK, Mutasa-Göettgens ES, Stevens M (2009) Progress towards the understanding and control of sugar beet rhizomania disease. Mol Plant Pathol 10:129–141

    PubMed  CAS  Google Scholar 

  • McKinney HH (1923) Investigations of the rosette disease of wheat and its control. J Agric Res 23:771–800

    Google Scholar 

  • Miyanishi M, Kusume T, Saito M, Tamada T (1999) Evidence for three groups of sequence variants of beet necrotic yellow vein virus RNA 5. Arch Virol 144:879–892

    PubMed  CAS  Google Scholar 

  • Miyanishi M, Roh SH, Yamamiya A, Ohsato S, Shirako Y (2002) Reassortment between genetically distinct Japanese and US strains of Soil-borne wheat mosaic virus: RNA1 from a Japanese strain and RNA2 from a US strain make a pseudorecombinant virus. Arch Virol 147:1141–1153

    PubMed  CAS  Google Scholar 

  • Morales FJ, Ward E, Castaño M, Arroyave JA, Lozano I, Adams MJ (1999) Emergence and partial characterisation of rice stripe necrosis virus and its fungus vector in South America. Eur J Plant Pathol 105:643–650

    CAS  Google Scholar 

  • Naidu RA, Sawyer S, Deom CM (2003) Molecular diversity of RNA-2 genome segments in pecluviruses causing peanut clump disease in West Africa and India. Arch Virol 148:83–98

    PubMed  CAS  Google Scholar 

  • Nakayama T, Maoka T, Hataya T, Shimizu M, Fuwa H, Tsuda S, Mori M (2010) Diagnosis of Potato mop-top virus in soil using bait plant bioassay and RT-PCR-microplate hybridization. Am J Potato Res 87:218–225

    CAS  Google Scholar 

  • Neuhauser S, Bulman S, Kirchmair M (2010) Plasmodiophorids: the challenge to understand soil-borne, obligate biotrophs with a multiphasic life cycle. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Heidelberg, pp 51–78

    Google Scholar 

  • Neuhauser S, Kirchmair M, Gleason FH (2011) Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems—a review. Mar Freshw Res 62:365–371

    PubMed  CAS  Google Scholar 

  • Nishigawa H, Hagiwara T, Yumoto M, Sotome T, Kato T, Natsuaki T (2008) Molecular phylogenetic analysis of Barley yellow mosaic virus. Arch Virol 153:1783–1786

    PubMed  CAS  Google Scholar 

  • Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M, Yamauchi H, Murray TD (2010) Mapping a gene conferring resistance to wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ (Triticum aestivum L.). Euphytica 176:223–229

    CAS  Google Scholar 

  • Nolt BL, Rajeshwari R, Reddy DVR, Bharathan N, Manohar SK (1988) Indian peanut clump virus isolates: host range, symptomatology, serological relationships, and some physical properties. Phytopathology 78:310–313

    Google Scholar 

  • Nomura K, Kashiwazaki S, Hibino H, Inoue T, Nakata E, Tsuzaki Y, Okuyama S (1996) Biological and serological properties of strains of barley mild mosaic virus. J Phytopathol 144:103–107

    Google Scholar 

  • Ohto Y (2005) Studies on the ecology of wheat yellow mosaic disease (in Japanese with English summary). Bull Natl Agric Res Cent Tohoku Reg 104:17–74

    Google Scholar 

  • Ohto Y (2006) Studies on the pathotypes of Japanese isolates of Wheat yellow mosaic virus and their distribution in Japan (in Japanese with English summary). Bull Natl Agric Res Cent Tohoku Reg 105:73–96

    Google Scholar 

  • Okada Y, Kanatani R, Arai S, Ito K (2004) Interaction between barley yellow mosaic disease-resistance genes rym1 and rym5, in the response to BaYMV strains. Breed Sci 54:319–325

    CAS  Google Scholar 

  • Ordon F, Ahlemeyer J, Werner K, Köhler W, Friedt W (2005) Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica 146:21–28

    CAS  Google Scholar 

  • Qu X, Christ BJ (2004) Genetic variation and phylogeny of Spongospora subterranea f.sp. subterranea based on ribosomal DNA sequence analysis. Am J Potato Res 81:385–394

    CAS  Google Scholar 

  • Rahim MD, Andika IB, Han C, Kondo H, Tamada T (2007) RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J Gen Virol 88:1611–1619

    PubMed  CAS  Google Scholar 

  • Ratti C, Hleibieh K, Bianchi L, Schirmer A, Rubies-Autonell C, Gilmer D (2009) Beet soil-borne mosaic virus RNA-3 is replicated and encapsidated in the presence of BNYVV RNA-1 and -2 and allows long distance movement in Beta macrocarpa. Virology 385:392–399

    PubMed  CAS  Google Scholar 

  • Reddy DVR, Rajeshwari R, Iizuka N, Lesemann DE, Nolt BL, Goto T (1983) The occurrence of Indian peanut clump, a soil-borne virus disease of groundnuts (Arachis hypogaea) in India. Ann Appl Biol 102:305–310

    Google Scholar 

  • Rochon D, Kakani K, Robbins M, Reade R (2004) Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annu Rev Phytopathol 42:211–241

    PubMed  CAS  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    PubMed  CAS  Google Scholar 

  • Rush CM (2003) Ecology and epidemiology of Benyviruses and plasmodiophorid vectors. Annu Rev Phytopathol 41:567–592

    PubMed  CAS  Google Scholar 

  • Rush CM, Liu HY, Lewellen RT, Acosta-Leal R (2006) The continuing saga of rhizomania of sugar beets in the United States. Plant Dis 90:4–15

    Google Scholar 

  • Sandgren M (1995) Potato mop-top virus (PMTV): distribution in Sweden, development of symptoms during storage and cultivar trials in field and glasshouse. Potato Res 38:379–389

    Google Scholar 

  • Sandgren M, Plaisted RL, Watanabe KN, Olsson S, Valkonen JPT (2002) Evaluation of some North and South American potato breeding lines for resistance to Potato mop-top virus in Sweden. Am J Potato Res 79:205–210

    Google Scholar 

  • Sawada E (1927) Wheat yellow mosaic prevention (in Japanese). J Plant Protect (Byochugai-Zasshi) 14:444–449

    Google Scholar 

  • Shirako Y, Suzuki N, French RC (2000) Similarity and divergence among viruses in the genus Furovirus. Virology 270:201–207

    PubMed  CAS  Google Scholar 

  • Shirako Y, Matsuda E, Horita H, Sasaki J (2012) Complete nucleotide sequence of Soil-borne wheat mosaic virus isolated from wheat plants in Hokkaido (abstract in Japanese). Jpn J Phytopathol 78:32

    Google Scholar 

  • Slykhuis JT (1960) Evidence of soil-borne mosaic of wheat in Ontario. Can Plant Dis Surv 40:43

    Google Scholar 

  • Smith MJ, Adams MJ, Ward E (2013) Ribosomal DNA analyses reveal greater sequence variation in Polymyxa species than previously thought and indicate the possibility of new ribotype–host–virus associations. Environ Microbiol Rep 5:143–150

    PubMed  CAS  Google Scholar 

  • Sotome T, Kawada N, Kato T, Sekiwa T, Nishigawa H, Natsuaki T, Kimura K, Maeoka Y, Nagamine T, Kobayashi S, Wada Y, Yoshida T (2010) The current and new strains of Barley yellow mosaic virus (BaYMV) in Tochigi Prefecture (in Japanese with English summary). Jpn J Crop Sci 79:29–36

    Google Scholar 

  • Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922

    PubMed  CAS  Google Scholar 

  • Sun L, Andika IB, Kondo H, Chen JP (2013) Identification of amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization. Mol Plant Pathol 14:265–278

    PubMed  CAS  Google Scholar 

  • Takahashi R (1983) Catalogue of barley germplasm preserved in Okayama University. Inst Agric Biol Sci. Okayama Univ, Kurashiki

    Google Scholar 

  • Tamada T (1999) Benyvirus. In: Webster RG, Granoff A (eds) Encyclopedia of virology, 2nd edn. Academic Press, London, pp 154–160

  • Tamada T, Baba T (1973) Beet necrotic yellow vein virus from rhizomania-affected sugar beet in Japan. Ann Phytopathol Soc Jpn 39:325–332

    Google Scholar 

  • Tamada T, Shirako Y, Abe H, Saito M, Kigushi T, Harada T (1989) Production and pathogenicity of isolates of beet necrotic yellow vein virus with different numbers of RNA components. J Gen Virol 70:3399–3409

    CAS  Google Scholar 

  • Tamada T, Schmitt C, Saito M, Guilley H, Richards K, Jonard G (1996) High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen Virol 77:1359–1367

    PubMed  CAS  Google Scholar 

  • Tamada T, Uchino H, Kusume T, Saito M (1999) RNA 3 deletion mutants of beet necrotic yellow vein virus do not cause rhizomania disease in sugar beets. Phytopathology 89:1000–1006

    PubMed  CAS  Google Scholar 

  • Te J, Melcher U, Howard A, Verchot-Lubicz J (2005) Soilborne wheat mosaic virus (SBWMV) 19 K protein belongs to a class of cysteine rich proteins that suppress RNA silencing. Virol J 2:18

    PubMed  Google Scholar 

  • Thiel H, Hleibieh K, Gilmer D, Varrelmann M (2012) The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. Mol Plant-Microbe Interact 25:1058–1072

    PubMed  CAS  Google Scholar 

  • Thouvenel JC, Dollet M, Fauquet C (1976) Some properties of peanut clump, a newly discovered virus. Ann Appl Biol 84:311–320

    Google Scholar 

  • Tomlinson JA (1958) Crook root of watercress. III. The causal organism Spongospora subterranea (Wallr.) Lagerh. f.sp. nasturtii f.sp. nov. Trans Brit Mycol Soc 41:491–498

    Google Scholar 

  • Tomlinson JA, Hunt J (1987) Studies on watercress chlorotic leaf spot virus and on the control of the fungus vector (Spongospora subterranea) with zinc. Ann Appl Biol 110:75–88

    CAS  Google Scholar 

  • Torrance L, Koenig R (2005) Genus Furovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Elsevier Academic Press, San Diego, pp 1027–1032

    Google Scholar 

  • Torrance L, Wright KM, Crutzen F, Cowan GH, Lukhovitskaya NI, Bragard C, Savenkov EI (2011) Unusual features of pomoviral RNA movement. Front Microbiol 2:259

    PubMed  Google Scholar 

  • Vetter G, Hily JM, Klein E, Schmidlin L, Haas M, Merkle T, Gilmer D (2004) Nucleo-cytoplasmic shuttling of the beet necrotic yellow vein virus RNA-3-encoded p25 protein. J Gen Virol 85:2459–2469

    PubMed  CAS  Google Scholar 

  • Walsh JA, Clay CM, Miller A (1989) A new virus disease of watercress in England. EPPO Bulletin 19:463–470

    Google Scholar 

  • Ward E, Adams MJ (1998) Analysis of ribosomal DNA sequences of Polymyxa species and related fungi and the development of genus- and species-specific PCR primers. Mycol Res 102:965–974

    CAS  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A (2010) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962

    PubMed  Google Scholar 

  • Werner K, Friedt W, Laubach E, Waugh R, Ordon F (2003) Dissection of resistance to soil-borne yellow-mosaic-inducing viruses of barley (BaMMV, BaYMV, BaYMV-2) in a complex breeders’ cross by means of SSRs and simultaneous mapping of BaYMV/BaYMV-2 resistance of var. ‘Chikurin Ibaraki 1’. Theor Appl Genet 106:1425–1432

    PubMed  CAS  Google Scholar 

  • Xu H, DeHaan TL, De Boer SH (2004) Detection and confirmation of Potato mop-top virus in potatoes produced in the United States and Canada. Plant Dis 88:363–367

    CAS  Google Scholar 

  • You Y, Shirako Y (2010) Bymovirus reverse genetics: requirements for RNA2-encoded proteins in systemic infection. Mol Plant Pathol 11:383–394

    PubMed  CAS  Google Scholar 

  • You Y, Shirako Y (2013) Evaluation of host resistance to Barley yellow mosaic virus infection at the cellular and whole-plant levels. Plant Pathol 62:226–232

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ohara Foundation for Agricultural Research (H.K) and by Yomogi Inc. (T.T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Tamada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamada, T., Kondo, H. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. J Gen Plant Pathol 79, 307–320 (2013). https://doi.org/10.1007/s10327-013-0457-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-013-0457-3

Keywords

Navigation