Skip to main content

Pathogenicity and virulence factors of Pseudomonas syringae

Abstract

In 1994, Oku reported that plant pathogens, mainly fungal pathogens, require three essential abilities to infect plants: to enter plants, to overcome host resistance, and to evoke disease. Because the infectious process of phytopathogenic bacteria differs from that of fungal pathogens, we have attempted to characterize pathogenicity, the ability of a pathogen to cause disease, using the phytopathogenic bacterium Pseudomonas syringae as a representative pathogen. To establish infection and incite disease development, bacteria first have to enter a plant. This process requires flagella- and type IV pili-mediated motility, and active taxis is probably necessary for effective infection. After bacteria enter a plant’s apoplastic spaces, they need to overcome host plant resistance. To do this, they secrete a wide variety of hypersensitive response and pathogenicity (Hrp) effector proteins into the plant cytoplasm to interfere with pathogen/microbe-associated molecular pattern- and effector-triggered immunity, produce phytohormones and/or phytotoxins to suppress plant defense responses and extracellular polysaccharides to prevent access by antibiotics and to chelate Ca2+, and activate the multidrug resistance efflux pump to extrude antimicrobial compounds for successful colonization. Furthermore, to evoke disease, bacteria produce toxins and Hrp effectors that compromise a plant’s homeostasis and injure plant cells. The expression of these virulence factors depends on the infection processes and environmental conditions. Thus, the expression and function of virulence factors interact with each other, creating complex networks in the regulation of bacterial virulence-related genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446–449

    PubMed  CAS  Article  Google Scholar 

  2. Aslam SN, Newman MA, Erbs G, Morrissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Ierano T, Molinaro A, Jackson RW, Knight MR, Cooper RM (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    PubMed  CAS  Article  Google Scholar 

  3. Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL (2011) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog 7:e1002132

    PubMed  CAS  Article  Google Scholar 

  4. Baltrus DA, Nishimura MT, Dougherty KM, Biswas S, Mukhtar MS, Vicente J, Holub EB, Dangl JL (2012) The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 25:877–888

    PubMed  CAS  Article  Google Scholar 

  5. Bender CL, Alarcón-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    PubMed  CAS  Google Scholar 

  6. Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr Opin Microbiol 14:39–46

    PubMed  CAS  Article  Google Scholar 

  7. Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130

    PubMed  CAS  Article  Google Scholar 

  8. Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180:5211–5217

    PubMed  CAS  Google Scholar 

  9. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–1117

    PubMed  CAS  Article  Google Scholar 

  10. Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK (2007) PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 73:3684–3694

    PubMed  CAS  Article  Google Scholar 

  11. Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN (2007) Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci USA 104:20131–20136

    PubMed  CAS  Article  Google Scholar 

  12. Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, Yang JM, Ryan RP, McCarthy Y, Dow JM, Wang AHJ, Chou SH (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396:646–662

    PubMed  CAS  Article  Google Scholar 

  13. Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60

    PubMed  CAS  Article  Google Scholar 

  14. da Cunha L, Sreerekha MV, Mackey D (2007) Defense suppression by virulence effectors of bacterial phytopathogens. Curr Opin Plant Biol 10:349–357

    PubMed  Article  CAS  Google Scholar 

  15. Deng X, Xiao Y, Lan L, Zhou JM, Tang X (2009) Pseudomonas syringae pv. phaseolicola mutants compromised for type III secretion system gene induction. Mol Plant Microbe Interact 22:964–976

    PubMed  CAS  Article  Google Scholar 

  16. Dong T, Schellhorn HE (2010) Role of RpoS in virulence of pathogens. Infect Immun 78:887–897

    PubMed  CAS  Article  Google Scholar 

  17. Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185–1188

    PubMed  CAS  Article  Google Scholar 

  18. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Article  Google Scholar 

  19. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    PubMed  CAS  Article  Google Scholar 

  20. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    PubMed  CAS  Article  Google Scholar 

  21. Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, Powell TK, Lindow S, Kaiser M, Dudler R (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755–758

    PubMed  CAS  Article  Google Scholar 

  22. Guo M, Tian F, Wamboldt Y, Alfano JR (2009) The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe Interact 22:1069–1080

    PubMed  CAS  Article  Google Scholar 

  23. Guo M, Block A, Bryan CD, Becker DF, Alfano JR (2012) Pseudomonas syringae catalases are collectively required for plant pathogenesis. J Bacteriol 194:5054–5064

    PubMed  CAS  Article  Google Scholar 

  24. Haefele DM, Lindow SE (1987) Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Appl Environ Microbiol 53:2528–2533

    PubMed  CAS  Google Scholar 

  25. Hattermann DR, Ries SM (1989) Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289

    Article  Google Scholar 

  26. He SY, Huang HC, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266

    PubMed  CAS  Article  Google Scholar 

  27. Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    PubMed  CAS  Article  Google Scholar 

  28. Hossain MM, Shibata S, Aizawa S, Tsuyumu S (2005) Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol Mol Plant Pathol 66:134–143

    CAS  Article  Google Scholar 

  29. Hossain MM, Tani C, Suzuki T, Taguchi F, Ezawa T, Ichinose Y (2008) Polyphosphate kinase is essential for swarming motility, tolerance to environmental stresses, and virulence in Pseudomonas syringae pv. tabaci 6605. Physiol Mol Plant Pathol 72:122–127

    CAS  Article  Google Scholar 

  30. Hsiao YM, Liu YF, Fang MC, Song WL (2011) XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol Res 166:548–565

    PubMed  CAS  Article  Google Scholar 

  31. Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T (2001) Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiol Biochem 39:771–776

    CAS  Article  Google Scholar 

  32. Ichinose Y, Shimizu R, Ikeda Y, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T (2003) Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ∆fliC and ∆fliD in host tobacco plants. J Gen Plant Pathol 69:244–249

    CAS  Article  Google Scholar 

  33. Ichinose Y, Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Atsumi T, Iwaki M, Manabe H, Kumagai M, Nguyen QT, Nguyen CL, Inagaki Y, Ono H, Chiku K, Ishii T, Yoshida M (2013) Flagellin glycosylation is ubiquitous in a broad range of phytopathogenic bacteria. J Gen Plant Pathol (in press)

  34. Kanda E, Tatsuta T, Suzuki T, Taguchi F, Naito K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2011) Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605. Mol Genet Genomics 285:163–174

    PubMed  CAS  Article  Google Scholar 

  35. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    PubMed  CAS  Article  Google Scholar 

  36. Kawakita Y, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2012) Characterization of each aefR and mexT mutant in Pseudomonas syringae pv. tabaci 6605. Mol Genet Genomics 287:473–484

    PubMed  CAS  Article  Google Scholar 

  37. Kimura M, Anzai H, Yamaguchi I (2001) Microbial toxins in plant–pathogen interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl Microbiol 47:149–160

    PubMed  CAS  Article  Google Scholar 

  38. Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    PubMed  CAS  Article  Google Scholar 

  39. Kuchma SL, O’Toole GA (2000) Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 11:429–433

    PubMed  CAS  Article  Google Scholar 

  40. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    PubMed  CAS  Article  Google Scholar 

  41. Laue H, Schenk A, Li H, Lambertsen L, Neu TR, Molin S, Ullrich MS (2006) Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152:2909–2918

    PubMed  CAS  Article  Google Scholar 

  42. Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    PubMed  CAS  Article  Google Scholar 

  43. Lee J, Klüsener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Nöller J, Weiler EW, Cornelis GR, Mansfield JW, Nürnberger T (2001) HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci USA 98:289–294

    PubMed  CAS  Google Scholar 

  44. Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC, Börnke F, Angers S, Wilde A, Guttman DS, Desveaux D (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8:e1002523

    PubMed  CAS  Article  Google Scholar 

  45. Lindeberg M, Cunnac S, Collmer A (2009) The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10:767–775

    PubMed  CAS  Article  Google Scholar 

  46. Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208

    PubMed  CAS  Article  Google Scholar 

  47. Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol 168:512–522 [Erratum in: J Bacteriol (1987) 169:928]

    Google Scholar 

  48. Ma W (2011) Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci 181:342–346

    PubMed  CAS  Article  Google Scholar 

  49. Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S (2010) A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Mol Plant Microbe Interact 23:1197–1205

    PubMed  CAS  Article  Google Scholar 

  50. Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    PubMed  CAS  Article  Google Scholar 

  51. Marutani M, Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2005) Flagellin from Pseudomonas syringae pv. tabaci induced hrp-independent HR in tomato. J Gen Plant Pathol 71:289–295

    CAS  Article  Google Scholar 

  52. Marutani M, Taguchi F, Ogawa Y, Hossain MM, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genomics 279:313–322

    PubMed  CAS  Article  Google Scholar 

  53. Matsumura K, Furukawa S, Ogihara H, Morinaga Y (2011) Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci 16:69–72

    PubMed  CAS  Article  Google Scholar 

  54. Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    PubMed  CAS  Article  Google Scholar 

  55. Munkvold KR, Martin ME, Bronstein PA, Collmer A (2008) A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae. Mol Plant Microbe Interact 21:490–502

    PubMed  CAS  Article  Google Scholar 

  56. Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda T, Shiraishi T, Ichinose Y (2008) Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant Microbe Interact 21:1165–1174

    PubMed  CAS  Article  Google Scholar 

  57. Nguyen LC, Yamamoto M, Ohnishi-Kameyama M, Andi S, Taguchi F, Iwaki M, Yoshida M, Ishii T, Konishi T, Tsunemi K, Ichinose Y (2009) Genetic analysis of genes involved in synthesis of modified 4-amino-4,6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci. Mol Genet Genomics 282:595–605

    PubMed  CAS  Article  Google Scholar 

  58. Nguyen LC, Taguchi F, Tran QM, Naito K, Yamamoto M, Ohnishi-Kameyama M, Ono H, Yoshida M, Chiku K, Ishii T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2012) Type IV pilin is glycosylated in Pseudomonas syringae pv. tabaci 6605 and is required for surface motility and virulence. Mol Plant Pathol 13:764–774

    PubMed  CAS  Article  Google Scholar 

  59. Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant–Pseudomonas syringae interactions. Curr Opin Plant Biol 8:361–368

    PubMed  CAS  Article  Google Scholar 

  60. Oku H (1994) Plant pathogenesis and disease control. Lewis Publishers, Boca Raton

    Google Scholar 

  61. Oku H, Shiraishi T, Ouchi S (1977) Suppression of induction of phytoalexin, pisatin. Naturwissenshaften 64:643

    CAS  Article  Google Scholar 

  62. Ortiz-Martín I, Thwaites R, Macho AP, Mansfield JW, Beuzón CR (2010a) Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Mol Plant Microbe Interact 23:665–681

    PubMed  Article  CAS  Google Scholar 

  63. Ortiz-Martín I, Thwaites R, Mansfield JW, Beuzón CR (2010b) Negative regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola. Mol Plant Microbe Interact 23:682–701

    PubMed  Article  CAS  Google Scholar 

  64. Panopoulos NJ, Schroth MN (1974) Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64:1389–1397

    Article  Google Scholar 

  65. Quiñones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    PubMed  Article  Google Scholar 

  66. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    PubMed  Article  CAS  Google Scholar 

  67. Reverchon S, Expert D, Robert-Baudouy J, Nasser W (1997) The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi. J Bacteriol 179:3500–3508

    PubMed  CAS  Google Scholar 

  68. Robinette D, Matthysse AG (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola. J Bacteriol 172:5742–5749

    PubMed  CAS  Google Scholar 

  69. Sawada H, Suzuki F, Matsuda I, Saitou N (1999) Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49:627–644

    PubMed  CAS  Article  Google Scholar 

  70. Schellenberg B, Ramel C, Dudler R (2010) Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol Plant Microbe Interact 23:1287–1293

    PubMed  CAS  Article  Google Scholar 

  71. Schenk A, Weingart H, Ullrich MS (2008) The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of Pseudomonas syringae pv. glycinea. Microbiology 154:413–421

    PubMed  CAS  Article  Google Scholar 

  72. Serate J, Roberts GP, Berg O, Youn H (2011) Ligand responses of Vfr, the virulence factor regulator from Pseudomonas aeruginosa. J Bacteriol 193:4859–4868

    PubMed  CAS  Article  Google Scholar 

  73. Shiba T, Tsutsumi K, Yano H, Ihara Y, Kameda A, Tanaka K, Takahashi H, Munekata M, Rao NN, Kornberg A (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 94:11210–11215

    PubMed  CAS  Article  Google Scholar 

  74. Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) The ∆fliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics 269:21–30

    PubMed  CAS  Google Scholar 

  75. Shiraishi T, Yamada T, Ichinose Y, Kiba A, Toyoda K (1997) The role of suppressors in determining host–parasite specificities in plant cells. Int Rev Cytol 172:55–93

    CAS  Article  Google Scholar 

  76. Stauber JL, Loginicheva E, Schechter LM (2012) Carbon source and cell density-dependent regulation of type III secretion system gene expression in Pseudomonas syringae pathovar tomato DC3000. Res Microbiol 163:531–539

    PubMed  CAS  Article  Google Scholar 

  77. Stoitsova SO, Braun Y, Ullrich MS, Weingart H (2008) Characterization of the RND-type multidrug efflux pump MexAB–OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol 74:3387–3393

    PubMed  CAS  Article  Google Scholar 

  78. Taguchi F, Ichinose Y (2011) Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. Mol Plant Microbe Interact 24:1001–1011

    PubMed  CAS  Article  Google Scholar 

  79. Taguchi F, Ichinose Y (2013) Virulence factor regulator (Vfr) controls virulence-associated phenotypes in Pseudomonas syringae pv. tabaci 6605 by a quorum sensing-independent mechanism. Mol Plant Pathol 14:279–292

    PubMed  CAS  Article  Google Scholar 

  80. Taguchi F, Tanaka R, Kinoshita S, Ichinose Y, Imura Y, Andi S, Toyoda K, Shiraishi T, Yamada T (2001) HarpinPsta from Pseudomonas syringae pv. tabaci is defective and deficient in its expression and HR-inducing activity. J Gen Plant Pathol 67:116–123

    CAS  Article  Google Scholar 

  81. Taguchi F, Ogawa Y, Takeuchi K, Suzuki T, Toyoda K, Shiraishi T, Ichinose Y (2006a) A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol 188:8376–8384

    PubMed  CAS  Article  Google Scholar 

  82. Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006b) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938

    PubMed  CAS  Article  Google Scholar 

  83. Taguchi F, Shibata S, Suzuki T, Ogawa Y, Aizawa S, Takeuchi K, Ichinose Y (2008) Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. J Bacteriol 190:764–768

    PubMed  CAS  Article  Google Scholar 

  84. Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010a) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126

    PubMed  CAS  Article  Google Scholar 

  85. Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Konishi T, Ichinose Y (2010b) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72–80

    PubMed  CAS  Article  Google Scholar 

  86. Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    PubMed  CAS  Article  Google Scholar 

  87. Tang X, Xiao Y, Zhou JM (2006) Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 19:1159–1166

    PubMed  CAS  Article  Google Scholar 

  88. Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    PubMed  CAS  Article  Google Scholar 

  89. Tsunemi K, Taguchi F, Marutani M, Watanabe-Sugimoto M, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2011) Degeneration of hrpZ gene in Pseudomonas syringae pv. tabaci to evade tobacco defence: an arms race between tobacco and its bacterial pathogen. Mol Plant Pathol 12:709–714

    PubMed  CAS  Article  Google Scholar 

  90. Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL (2005) The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J 42:201–217

    PubMed  CAS  Article  Google Scholar 

  91. Valls M, Genin S, Boucher C (2006) Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2:e82

    PubMed  Article  CAS  Google Scholar 

  92. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  93. Wei W, Plovanich-Jones A, Deng WL, Jin QL, Collmer A, Huang HC, He SY (2000) The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc Natl Acad Sci USA 97:2247–2252

    PubMed  CAS  Article  Google Scholar 

  94. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    PubMed  CAS  Article  Google Scholar 

  95. Wroblewski T, Caldwell KS, Piskurewicz U, Cavanaugh KA, Xu H, Kozik A, Ochoa O, McHale LK, Lahre K, Jelenska J, Castillo JA, Blumenthal D, Vinatzer BA, Greenberg JT, Michelmore RW (2009) Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol 150:1733–1749

    PubMed  CAS  Article  Google Scholar 

  96. Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31:253–273

    PubMed  CAS  Article  Google Scholar 

  97. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    PubMed  CAS  Article  Google Scholar 

  98. Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM, Cooksey DA, Yang CH (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    PubMed  CAS  Article  Google Scholar 

  99. Yang HJ, Lee JS, Cha JY, Baik HS (2011) Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells 32:317–323

    PubMed  CAS  Article  Google Scholar 

  100. Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697–3708

    PubMed  CAS  Article  Google Scholar 

  101. Yao J, Allen C (2007) The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol 189:6415–6424

    PubMed  CAS  Article  Google Scholar 

  102. Yoshioka H, Mase K, Yoshioka M, Kobayashi M, Asai S (2011) Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide 25:216–221

    PubMed  CAS  Article  Google Scholar 

  103. Young JM, Takikawa Y, Gardan L, Stead DE (1992) Changing concepts in the taxonomy of plant pathogenic bacteria. Annu Rev Phytopathol 30:67–105

    Article  Google Scholar 

  104. Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. T. Shiraishi, S. Tsuyumu, Y. Takikawa, Y. Hikichi, S. Tsuge, K. Takeuchi, M. Yamamoto, Y. Inagaki, and K. Toyoda for valuable discussion. This work was supported in part by Grants-in-Aid for Scientific Research (B) (No. 24380028) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuki Ichinose.

About this article

Cite this article

Ichinose, Y., Taguchi, F. & Mukaihara, T. Pathogenicity and virulence factors of Pseudomonas syringae . J Gen Plant Pathol 79, 285–296 (2013). https://doi.org/10.1007/s10327-013-0452-8

Download citation

Keywords

  • hrp
  • Motility
  • Multidrug resistance
  • Quorum sensing
  • Siderophore