Skip to main content

RNA silencing against viruses: molecular arms race between Cucumber mosaic virus and its host

Abstract

Plants have developed RNA silencing as an antiviral defense mechanism. To escape from the plant host’s defenses, viruses have countered their host’s antiviral silencing by producing RNA silencing suppressor proteins (RSSs). Although the mode of action of the majority of viral RSSs has been found to be through double-stranded RNA-binding, viruses have different strategies to counteract the host’s antiviral silencing pathways. The 2b protein of Cucumber mosaic virus, which is one of the most extensively studied viral RSSs, is reviewed here to provide insights on the molecular arms race between viruses and their host plants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Necleic Acids Res 34:462–471

    Article  CAS  Google Scholar 

  2. Amari K, Vazquez F, Heilein M (2012) Manipulation of plant host susceptibility: an emerging role for viral movement proteins? Front Plant Sci 3. doi:10.3389/fpls.2012.00010

  3. Brigneti G, Voinnet O, Li W-X, Ji L-H, Ding S-W, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    PubMed  Article  CAS  Google Scholar 

  4. Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    PubMed  Article  Google Scholar 

  5. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    PubMed  Article  CAS  Google Scholar 

  6. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    PubMed  Article  Google Scholar 

  7. Choi CW, Qu F, Ren T, Ye X, Morris TJ (2004) RNA silencing-suppressor function of Turnip crinkle virus coat protein cannot be attributed to its interaction with the Arabidopsis protein TIP. J Gen Virol 85:3415–3420

    PubMed  Article  CAS  Google Scholar 

  8. Csorba T, Pantaleo V, Burgyán J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    PubMed  Article  CAS  Google Scholar 

  9. Diaz-Pendon JA, Li F, Li W-X, Ding S-W (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    PubMed  Article  CAS  Google Scholar 

  10. Ding S-W, Lu R (2011) Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Curr Opin Virol 1:533–544

    PubMed  Article  CAS  Google Scholar 

  11. Duan C-G, Fang Y–Y, Zhou B-J, Zhao J-H, Hou W-N, Zhu H, Ding S-W, Guo H-S (2012) Suppression of Arabidopsis ARGONAUTE1-mediated silencing, transgene-induced RNA silencing, and DNA methylation by distinct domain of the Cucumber mosaic virus 2b protein. Plant Cell 24:259–274

    PubMed  Article  CAS  Google Scholar 

  12. Giner A, Lopez-Moya JJ, Lakatos L (2010) RNA silencing in plants and the role of viral suppressor. In: Martinez MA (ed) RNA interference and viruses. Caister Academic Press, Norfolk, pp 25–46

    Google Scholar 

  13. González I, Martínez L, Rakitina DV, Lewsey MG, Atencio FA, Llave C, Kalinina NO, Carr JP, Palukaitis P, Canto T (2010) Cucumber mosaic virus 2b protein subcellular targets and Interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23:294–303

    PubMed  Article  Google Scholar 

  14. González I, Rakitina D, Semashko M, Taliansky M, Praveen S, Palukaitis P, Carr JP, Kalinina N, Canto T (2012) RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA 18:771–782

    PubMed  Article  Google Scholar 

  15. Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C (2007) Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48:1050–1060

    PubMed  Article  CAS  Google Scholar 

  16. Guo X, Zhang Z, Gerstein MB, Zheng D (2009) Small RNAs originated from pseudogenes: cis- or trans-acting? PLoS Comput Biol 5:e1000449

    PubMed  Article  Google Scholar 

  17. Gy I, Gasciolli V, Lauressergues D, Morel J-B, Gomvert J, Proux F, Proux C, Vaucheret H, Mallory AC (2007) Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell 19:3451–3461

    PubMed  Article  CAS  Google Scholar 

  18. Haasnoot J, Westerhout EM, Berkhout B (2007) RNA interference against viruses: strike and counterstrike. Nature Biotech 25:1435–1443

    Article  CAS  Google Scholar 

  19. Hamera S, Song X, Su L, Chen X, Fang R (2012) Cucumber mosaic virus suppressor 2b binds to AGO4-related small RNAs and impairs AGO4 activities. Plant J 69:104–115

    PubMed  Article  CAS  Google Scholar 

  20. Harvey JW, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS ONE 6:e14639

    PubMed  Article  CAS  Google Scholar 

  21. Hu Q, Hollunder J, Niehl A, Kørner CJ, Gereige D, Windels D, Arnold A, Kuiper M, Vazquez F, Pooggin M, Heinlein M (2011) Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS ONE 6:e19549. doi:10.1371/journal.pone.0019549

    PubMed  Article  CAS  Google Scholar 

  22. Ji LH, Ding SW (2001) The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant Microbe Interact 14:715–724

    PubMed  Article  CAS  Google Scholar 

  23. Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582:2679–2684

    PubMed  Article  CAS  Google Scholar 

  24. Kanazawa A, Inaba J, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C (2011) Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J 65:156–168

    PubMed  Article  CAS  Google Scholar 

  25. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interfere with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    PubMed  Article  CAS  Google Scholar 

  26. Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    PubMed  Article  CAS  Google Scholar 

  27. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    PubMed  Article  CAS  Google Scholar 

  28. Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 23:835–845

    PubMed  Article  CAS  Google Scholar 

  29. Li F, Pignatta LF, Bendiz C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795

    PubMed  Article  CAS  Google Scholar 

  30. Mochizuki T, Ohki ST (2012) Cucumber mosaic virus: viral genes as virulence determinants. Mol Plant Pathol 13:217–225

    PubMed  Article  CAS  Google Scholar 

  31. Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang YJ, Jiang Z, Du X, Cook R, Das SC, Pattnaik AK, Beutler B, Han J (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27:123–134

    PubMed  Article  CAS  Google Scholar 

  32. Palukaitis P, Garcia-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    PubMed  Article  CAS  Google Scholar 

  33. Pasquinelli AE, Ruvkun G (2002) Control of developmental timing by microRNA and their targets. Annu Rev Cell Dev Biol 18:495–513

    PubMed  Article  CAS  Google Scholar 

  34. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals roles for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS ONE 4:e4971. doi:10.1371/journal.pone.0004971

    PubMed  Article  Google Scholar 

  35. Shams-Bakhsh M, Canto T, Palukaitis P (2007) Enhanced resistance and neutralization of defense responses by suppressors of RNA silencing. Virus Res 130:103–109

    PubMed  Article  CAS  Google Scholar 

  36. Shimura H, Pantaleo V (2011) Viral induction and suppression of RNA silencing in plants. Biochim Biophys Acta 1809:601–612

    PubMed  Article  CAS  Google Scholar 

  37. Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    PubMed  Article  CAS  Google Scholar 

  38. Várallyay E, Válóczi A, Ágyi Á, Burgyán J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    PubMed  Article  Google Scholar 

  39. Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136

    PubMed  Article  CAS  Google Scholar 

  40. Wang X-B, Jovel J, Udomporn P, Wang Y, Wu Q, Li W, Gasciolli V, Vaucheret H, Ding S-W (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638

    PubMed  Article  CAS  Google Scholar 

  41. Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285

    PubMed  Article  CAS  Google Scholar 

  42. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of dicer-like 1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    PubMed  Article  CAS  Google Scholar 

  43. Ye J, Qu J, Zhang J-F, Geng Y-F, Fang R-X (2009) A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity. FEBS Lett 583:101–106

    PubMed  Article  CAS  Google Scholar 

  44. Yu B, Chapman EJ, Yang Z, Carrington JC, Chen X (2006) Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis. FEBS Lett 580:3117–3120

    PubMed  Article  CAS  Google Scholar 

  45. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Staey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    PubMed  Article  CAS  Google Scholar 

  46. Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua N-H (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    PubMed  Article  CAS  Google Scholar 

  47. Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu J-K, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13:R20

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chikara Masuta.

About this article

Cite this article

Masuta, C., Shimura, H. RNA silencing against viruses: molecular arms race between Cucumber mosaic virus and its host. J Gen Plant Pathol 79, 227–232 (2013). https://doi.org/10.1007/s10327-013-0448-4

Download citation

Keywords

  • Cucumber mosaic virus
  • RNA silencing
  • 2b protein
  • Antiviral response