Skip to main content

Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary

Abstract

Twenty-one isolates of Trichoderma spp. were collected from eight states in Colombia and characterized based on the 5′ end of the translation elongation factor-1α (EF1-α1) gene and RNA polymerase II gene encoding the second largest protein subunit (RPB2) by using mixed primers. Seven species of soil-dwelling Trichoderma were found: T. atroviride, T. koningiopsis, T. asperellum, T. spirale, T. harzianum, T. brevicompactum and T. longibrachiatum. Species identifications based on the EF1-α1 gene were consistent with those obtained from the RPB2 gene. Phylogenetic analyses with high bootstrap values supported the validity of the identification of all isolates. These results suggest that using the combination of the genes EF1-α1 and RPB2 is highly reliable for molecular characterization of Trichoderma species. Trichoderma asperellum Th034, T. atroviride Th002 and T. harzianum Th203 prevented germination of more than 70 % of sclerotia of Sclerotinia sclerotiorum in bioassay tests and are promising biological control agents. No relationship between mycelium growth rate and parasitism level was found.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot 27:1354–1359

    Article  Google Scholar 

  2. Anas O, Reeleder RD (1987) Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in Quebec muck soils. Phytopathology 77:327–331

    Article  Google Scholar 

  3. Anas O, Reeleder RD (1988) Consumption of sclerotia of Sclerotinia sclerotiorum by larvae of Bradysia coprophila: influence of soil factors and interactions between larvae and Trichoderma viride. Soil Biol Biochem 20:619–624

    Article  Google Scholar 

  4. Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98

    Article  Google Scholar 

  5. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931

    Article  Google Scholar 

  6. Bissett J (1991a) A revision of the genus Trichoderma II. Infrageneric classification. Can J Bot 69:2357–2372

    Article  Google Scholar 

  7. Bissett J (1991b) A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417

    Article  Google Scholar 

  8. Bissett J (1991c) A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420

    Article  Google Scholar 

  9. Castle A, Speranzini D, Rghei N, Alm G, Rinker D, Bissett J (1998) Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl Environ Microbiol 64:133–137

    PubMed  CAS  Google Scholar 

  10. Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–116

    Google Scholar 

  11. Cheney SA, Lafranchi-Tristem NL, Bourges D, Canning EU (2001) Relationship of microsporidian genera, with emphasis on the polysporous genera, revealed by sequences of the largest subunit of RNA polymerase II (RPB1). J Eukaryot Microbiol 48:111–117

    PubMed  Article  CAS  Google Scholar 

  12. Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviride sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95:27–40

    PubMed  Article  Google Scholar 

  13. Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 2:100–112

    Google Scholar 

  14. Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP (2006) Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72:2126–2133

    PubMed  Article  CAS  Google Scholar 

  15. Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protect 19:709–714

    Article  Google Scholar 

  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  17. Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Article  Google Scholar 

  18. Harman GE, Chet I, Baker R (1981) Factors affecting Trichoderma hamatum applied to seeds as a biocontrol agent. Phytopathology 71:569–572

    Article  Google Scholar 

  19. Harman GE, Howell RC, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    PubMed  Article  CAS  Google Scholar 

  20. Hirt PR, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585

    PubMed  Article  CAS  Google Scholar 

  21. Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598

    PubMed  Article  Google Scholar 

  22. Hjeljord LG, Tronsmo A (2005) Trichoderma and Gliocladium in biological control: overview. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium vol 2, Enzymes, biological control and commercial applications. Taylor and francis, Bristol, pp 115–133

  23. Hoyos-Carvajal L, Duque G, Orduz PS (2008) Antagonism of Trichoderma spp. against isolates of Sclerotinia spp. and Rhizoctonia spp. in vitro. Rev Colomb Cienc Hortic 2:76–86

    Google Scholar 

  24. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631

    PubMed  Article  CAS  Google Scholar 

  25. Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763

    Article  CAS  Google Scholar 

  26. Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    PubMed  Article  Google Scholar 

  27. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. vol III, Academic Press, New York. pp 21–132

  28. Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377

    Article  CAS  Google Scholar 

  29. Keszler A, Forgacs E, Kótai L, Vizcaino JA, Monte E, Garcia-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry. J Chromat Sci 38:421–424

    CAS  Google Scholar 

  30. Kim TG, Knudsen GR (2008) Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Appl Soil Ecol 40:100–108

    Article  Google Scholar 

  31. Knudsen GR, Eschen DJ, Dandurand LM, Bin L (1991) Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis 75:446–470

    Article  Google Scholar 

  32. Kubicek I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319

    PubMed  Article  CAS  Google Scholar 

  33. Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (=T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microb 66:2232–2234

    Article  CAS  Google Scholar 

  34. Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microb 65:1858–1863

    CAS  Google Scholar 

  35. Martinez D, Chapman J, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    PubMed  Article  CAS  Google Scholar 

  36. Menzies JG (1993) A strain of Trichoderma viride pathogenic to germinating seedlings of cucumber, pepper and tomato. Plant Pathol 42:784–791

    Article  Google Scholar 

  37. Mittermeier R, Mittermeier C (1997) Megadiversity: Earth’s biologically wealthiest nations. CEMEX, Mexico City, p 501

    Google Scholar 

  38. Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64

    Google Scholar 

  39. Ohata K (1989) Fungus disease. In: Ohata K (ed) Rice diseases in Japan. ZenkokuNosonKyoikuKyokai, Tokyo, pp 278–280 (in japanese)

    Google Scholar 

  40. Ospina-Giraldo MD, Royse DJ, Thon MR, Chen X, Romaine CP (1998) Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90:76–81

    Article  Google Scholar 

  41. París MA, Cotes AM, Beltrán C (2003) Selección de una cepa de Trichoderma sp. con actividad biocontroladora de Rhizoctonia solani en tubérculos de papa. Memórias XXIV Congreso Ascolfi, 23–27 June 2003, Armenia. Quindio, Colombia, p 23

  42. Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875–880

    Article  Google Scholar 

  43. Rifai MA (1969) A revision of the genus Trichoderma. Mycol pap 116:1–56

    Google Scholar 

  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  45. Samuels GJ, Ismaiel A, Bon MC, de Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966

    PubMed  Article  CAS  Google Scholar 

  46. Schwartz HF, Steadman JR (1978) Factors affecting Sclerotium populations and apothecium production by, Sclerotinia sclerotiorum. Phytopathology 68:383–388

    Article  Google Scholar 

  47. Sharma K, Mishra AK, Misra RS (2009) Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficiency as biological control agents. J Phytopathol 157:51–56

    Article  CAS  Google Scholar 

  48. Shoukouhi E, Bissett J (2008) Preferred primers for sequencing the 5′ end of the translation elongation factor 1-alpha gene (EF1-α1) and subunit 2 of the RNA polymerase B gene (RPB2). http://www.isth.info/methods. Verified Dec 13, 2010

  49. Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  50. Watanabe S, Kumakura K, Kato H, Iyozumi H, Togawa M, Nagayama K (2005) Identification of Trichoderma SKT-1, a biological control agent against seedborne pathogens of rice. J Gen Plant Pathol 71:351–356

    Article  CAS  Google Scholar 

  51. Williamson M (1992) Environmental risks from the release of genetically modified organisms (GMOs) the need for molecular ecology. Mol Ecol 1:3–8

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Víctor Núñez, Dr. Carolina González, Mr. Jhon Pablo Vargs and various colleagues at the Biological Control Laboratory and Plant Genetics Molecular Laboratory in Corpoica for their help and kindness. M.D. is appreciative of helpful advice from Dr. Masuya Hayato of the Forestry and Forest Products Research Institute in Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michihito Deguchi.

About this article

Cite this article

Smith, A., Beltrán, C.A., Kusunoki, M. et al. Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary. J Gen Plant Pathol 79, 74–85 (2013). https://doi.org/10.1007/s10327-012-0419-1

Download citation

Keywords

  • Trichoderma spp.
  • EF1-α1 gene
  • RPB2 gene
  • Molecular phylogeny
  • Biological control
  • Sclerotinia sclerotiorum