Skip to main content

Advertisement

Log in

Engineered resistance against filamentous pathogens in Solanum tuberosum

  • Review
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Potato is one of the most important noncereal crops in the world today, and like other major crops, it is prone to substantial yield losses because of various factors including disease. Recent molecular advancements in plant–pathogen studies have led to the identification of various host genes involved in the plant’s defense against pathogen attack. These genes may encode antimicrobial peptides, enzymes for phytoalexin production, proteins involved in defense-signaling cascades, and hydrolytic enzymes or pathogenesis-related proteins that are directly or indirectly responsible for the plant’s defense responses following a pathogen attack. A plant’s disease-resistance (R) genes are another important group of genes that have been used with varying degrees of success in crop improvement programs. Cloning and characterization of these genes and the dissection of signal-transduction components of the defense response have greatly increased the scope for transgenic disease resistance. This article highlights the current scenario and potential of the molecular approaches to improve resistance against filamentous pathogens in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abad MS, Hakimi SM, Kaniewski WK, Rommens CM, Shulaev V, Lam E, Shah DM (1997) Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin. Mol Plant Microbe Interact 10:635–645

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P, Valent BS (1974) Host–pathogen interactions: VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen. Plant Physiol 53:684–687

    Article  PubMed  CAS  Google Scholar 

  • Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host–parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960

    Article  PubMed  CAS  Google Scholar 

  • Almasia NI, Ariel A, Bazzini H, Esteban H, Vazquez-Rovere C (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338

    Article  PubMed  CAS  Google Scholar 

  • Almasia NI, Narhirñak V, Hopp HE, Vazquez-Rovere C (2010) Isolation and characterization of the tissue and development-specific potato snakin-1 promoter inducible by temperature and wounding. Electron J Biotechnol 13. doi:10.2225/vol13-issue5-fulltext-12

    Google Scholar 

  • Avrova AO, Stewart HE, De Jong WD, Heilbronn J, Lyon GD, Birch PRJ (1999) A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant Microbe Interact 12:1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Bachmann D, Rezzonico E, Retelska D, Chételat A, Schaerer S, Beffa R (1998) Improvement of potato resistance to Phytophthora infestans by overexpressing antifungal hydrolases. In: 5th International workshop on pathogenesis-related proteins. Signaling pathways and biological activities, Aussois, France, March 29–April 2, 1998 (Abstract P-57)

  • Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  PubMed  CAS  Google Scholar 

  • Birch PRJ, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14:8–11

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28:113–138

    Article  CAS  Google Scholar 

  • Boller T (1993) Antimicrobial functions of the plant hydrolases, chitinases and β-1,3-glucanases. In: Fritig B, Legrand M (eds) Mechanisms of plant defense responses. Kluwer, Dordrecht, pp 391–400

    Chapter  Google Scholar 

  • Borkowska M, Krzymowska M, Talarczyk A, Awan MF, Yakovleva L, Kleczkowski K, Wielgat B (1998) Transgenic potato plants expressing soybean beta-1,3-endoglucanase gene exhibit an increased resistance to Phytophthora infestans. Z Naturforsch C 53(11–12):1012–1016

    PubMed  CAS  Google Scholar 

  • Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15:483–492

    Article  PubMed  Google Scholar 

  • Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Kramer LC, Millett BP, Austin-Phillips S, Jiang J, Carputo D (2009) Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Mol Plant Microbe Interact 22:437–446

    Article  PubMed  CAS  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortés C, Gutierréz A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935

    PubMed  CAS  Google Scholar 

  • Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJI, Jacobsen E, Visser RGF, van der Vossen EAG, Govers F, Vleeshouwers VGAA (2009) Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol Plant Microbe Interact 22:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • Chang MM, Chiang CC, Martin MW, Hadwiger LA (1993) Expression of a pea disease resistance response gene in the potato cultivar Shepody. Am J Potato Res 70:635–647

    Article  Google Scholar 

  • Chen Y, Halterman DA (2011) Phenotypic characterization of potato late blight resistance mediated by the broad-spectrum resistance gene RB. Phytopathology 101:263–270

    Article  PubMed  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fungal Genet Biol 48:4–14

    Article  PubMed  CAS  Google Scholar 

  • Chye ML, Zhao KJ, He ZM, Ramalingam S, Fung KL (2005) An agglutinating chitinase with two chitin-binding domains confers fungal protection in transgenic potato. Planta 220:717–730

    Article  PubMed  CAS  Google Scholar 

  • Collinge DB, Jørgensen HJL, Lund OS, Lyngkjær MF (2010) Engineering pathogen resistance in crop plants - current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Google Scholar 

  • Constabel CP, Bertrand C, Brisson N (1993) Transgenic potato plants overexpressing the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X. Plant Mol Biol 22:775–782

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen BJC, Melchers LS (1993) Strategies for control of fungal diseases in plants. Plant Physiol 101:709–712

    PubMed  CAS  Google Scholar 

  • Després C, Subramaniam R, Matton DP, Brisson N (1995) The activation of the potato PR10a gene requires the phosphorylation of the nuclear factor PBF-1. Plant Cell 7:589–598

    PubMed  Google Scholar 

  • Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  • Drake R, John I, Farrell A, Cooper W, Schuch W, Grierson D (1996) Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol Biol 30:755–767

    Article  PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  PubMed  CAS  Google Scholar 

  • El-Komy MH, Abou-taleb EM, Aboshosha SM, El-Sherif EM (2010) Differential expression of potato pathogenesis-related proteins upon infection with late blight pathogen: a case study expression of potato osmotin-like protein. Int J Agric Biol 12:179–186

    CAS  Google Scholar 

  • Eschen-Lippold L, Landgraf R, Smolka U, Schulze S, Heilmann M, Heilmann I, Hause G, Rosahl S (2012) Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytol 193:985–996

    Article  PubMed  CAS  Google Scholar 

  • Esfahani K, Motallebi M, Zamani MR, Sohi HH, Jourabchi E (2010) Transformation of potato (Solanum tuberosum cv. Savalan) by chitinase and β-1,3-glucanase genes of mycoparasitic fungi towards improving resistance to Rhizoctonia solani AG-3. Iran J Biotechnol 8:73–81

    CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–298

    Article  Google Scholar 

  • Foster SJ, Park TH, Pel M, Brigneti G, Śliwka J, Jagger L, van der Vossen E, Jones JDG (2009) Rpi-vnt1.1, a Tm-22 homolog from Solanum venturii, confers resistance to potato late blight. Mol Plant Microbe Interact 22:589–600

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Geu-Flores F, Nielsen MT, Nafisi M, Møldrup ME, Olsen CE, Motawia MS, Halkier BA (2009a) Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat Chem Biol 5:575–577

    Article  PubMed  CAS  Google Scholar 

  • Geu-Flores F, Olsen CE, Halkier BA (2009b) Towards engineering glucosinolates into non-cruciferous plants. Planta 229:261–270

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi S, Martin C, Valée JC (1970) Hypersensibilité aux virus, temperature et proteins solubles chez le Nicotiana xanthi n.c. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. C R Acad Sci (Paris) 270:2383–2386

    CAS  Google Scholar 

  • Göbel C, Feussner I, Hamberg M, Rosahl S (2002) Oxylipin profiling in pathogen-infected potato leaves. Biochim Biophys Acta 1584:55–64

    Article  PubMed  Google Scholar 

  • Gokul B, Lee JH, Song KB, Rhee SK, Kim CH, Panda T (2000) Characterization and applications of chitinases from Trichoderma harzianum—a review. Bioprocess Eng 23:691–694

    Article  CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    Article  CAS  Google Scholar 

  • Haggag WM (2008) Biotechnological aspects of plant resistance for fungal diseases management. American-Eurasian J Sustain Agric 2:1–18

    Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmeltzer E, Schreier PH, Stöker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S (2007) Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant Microbe Interact 20:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Halterman DA, Kramer LC, Wielgus S, Jiang J (2008) Performance of transgenic potato containing the late blight resistance gene RB. Plant Dis 92:339–343

    Article  CAS  Google Scholar 

  • Halterman DA, Chen Y, Sopee J, Berduo-Sandoval J, Sánchez-Pérez A (2010) Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLoS ONE 5:e10536. doi:10.1371/journal.pone.0010536

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  PubMed  CAS  Google Scholar 

  • Harighi MJ, Motallebi M, Zamani MR (2006) Purification of chitinase 42 from Trichoderma atroviride PTCC5220. Iran J Biol 19:203–214

    Google Scholar 

  • Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z (2001) Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome 44:368–374

    PubMed  CAS  Google Scholar 

  • Hoshikawa K, Ishihara G, Takahashi H, Nakamura I (2012) Enhanced resistance to gray mold (Botrytis cinerea) in transgenic potato plants expressing thionin genes isolated from Brassicaceae species. Plant Biotechnol 29:87–93

    Article  CAS  Google Scholar 

  • Jansky SH (2000) Breeding for disease resistance in potato. Plant Breed Rev 19:69–155

    Google Scholar 

  • Jiang RHY, Weide R, van de Vondervoort PJI, Govers F (2006) Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome Res 16:827–840

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  PubMed  CAS  Google Scholar 

  • Kamoun S, Huitema E, Vleeshouwers VGAA (1999) Resistance to oomycetes: a general role for the hypersensitive response? Trends Plant Sci 4:196–200

    Article  PubMed  Google Scholar 

  • Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RAL (2010) An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154:1794–1804

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricci P (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–235

    PubMed  CAS  Google Scholar 

  • Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  • Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20

    Article  Google Scholar 

  • Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597

    Article  PubMed  CAS  Google Scholar 

  • Kramer LC, Choudoir MJ, Wielgus SM, Bhaskar PB, Jiang J (2009) Correlation between transcript abundance of the RB gene and the level of the RB-mediated late blight resistance in potato. Mol Plant Microbe Interact 22:447–455

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Meins F Jr (1999) Functions and regulation of plant β-1,3-glucanase (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 49–76

    Google Scholar 

  • Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Liu SP, Zhu YP, Xie C, Jue DW, Hong YB, Chen M, Hubdar AK, Yang Q (2012) Transgenic potato plants expressing StoVe1 exhibit enhanced resistance to Verticillium dahliae. Plant Mol Biol Rep 30:1032–1039

    Google Scholar 

  • Lokosso AA, Park TH, van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson SC, Birch PRJ, Visser RGF, Jacobsen E, van der Vossen EAG (2009) Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant Microbe Interact 22:630–641

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Brisson N (1989) Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant Microbe Interact 2:325–331

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue, II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Stuiver MH (2000) Novel genes for disease resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Misas-Villamil JC, van der Hoorn RA (2008) Enzyme–inhibitor interactions at the plant–pathogen interface. Curr Opin Plant Biol 11:380–388

    Article  PubMed  CAS  Google Scholar 

  • Molders K, Quinet M, Decat J, Secco B, Duliére E, Pieters S, van der Kooij T, Lutts S, Van Der Straeten D (2012) Selection and hydroponic growth of potato cultivars for bioregenerative life support systems. Adv Space Res 50:156–165

    Article  CAS  Google Scholar 

  • Muller KO, Borger H (1940) Experimentelle untersuchungen über die Phytophthora-resistem der kartoffel. Reichsasnstalt Landw Forstw Berlin Arb Biol 23:189–231

    Google Scholar 

  • Neuhaus JM (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 77–105

    Google Scholar 

  • Ni X, Tian Z, Liu J, Song B, Xie C (2010) Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans. J Plant Physiol 167:488–496

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RJ, Panstruga R (2006) Téte á téte inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    Article  PubMed  CAS  Google Scholar 

  • Olivieri FP, Lobato MC, González Altamiranda E, Daleo GR, Huarte M, Guevara MG, Andreu AB (2009) BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. Eur J Plant Pathol 123:47–56

    Article  CAS  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    PubMed  CAS  Google Scholar 

  • Osusky M, Zho G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Derksen AMCE, Folders J, Govers F (1994) Expression of the Phytophthora infestans ipiB and ipiO genes in planta and in vitro. Mol Gen Genet 244:269–277

    Article  PubMed  CAS  Google Scholar 

  • Portieles R, Ayra C, Gonzales E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BPHJ, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can J Plant Pathol 23:216–235

    Article  CAS  Google Scholar 

  • Qutob D, Tedman-Jones J, Gijzen M (2006) Effector-triggered immunity by the plant pathogen Phytophthora. Trends Microbiol 14:470–473

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125

    Article  PubMed  CAS  Google Scholar 

  • Salmeron JM, Vernooij B (1998) Transgenic approaches to microbial disease resistance in crop plants. Curr Opin Plant Biol 1:347–352

    Article  PubMed  CAS  Google Scholar 

  • Schaffer MA, Fischer RL (1990) Transcriptional activation by heat and cold of a thiol protease gene in tomato. Plant Physiol 93:1486–1491

    Article  PubMed  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Shan WX, Cao M, Leung D, Tyler BM (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant Microbe Interact 17:394–403

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Tian Z, Liu J, van der Vossen EAG, Xie C (2012) A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans. Mol Biol Rep 39:1909–1916

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Xie CH, Clausen A, Jansky SH, Halterman D, Conner T, Knapp S, Brundage J, Symon D, Spooner D (2010) Wild and cultivated potato (Solanum sect. Petota) escaped and persistent outside of its natural range. Invasive Plant Sci Manag 3:286–293

    Article  Google Scholar 

  • Singh NK, Handa AK, Hasegawa PM, Bressan RA (1985) Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol 79:126–137

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536

    Article  PubMed  CAS  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133

    Article  PubMed  CAS  Google Scholar 

  • Stassen JHM, Van den Ackerveken G (2011) How do oomycete effectors interfere with plant life? Curr Opin Plant Biol 14:407–414

    Article  PubMed  Google Scholar 

  • Stone BA, Clarke AC (1993) Chemistry and biology of 1,3 β-glucans. La Trobe University Press, Bundoora

    Google Scholar 

  • Stotz HU, Thomson JG, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012

    Article  PubMed  CAS  Google Scholar 

  • Thines M, Kamoun S (2010) Oomycete–plant coevolution: recent advances and future prospects. Curr Opin Plant Biol 13:427–433

    Article  PubMed  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Tian Z, Liu J, Xie C, Song B (2003) Cloning of potato POTHR-1 gene and its expression in response to infection by Phytophthora infestans and other abiotic stimuli. Acta Bot Sin 45:959–965

    CAS  Google Scholar 

  • Tian M, Huitema E, da Cunha L, Torto-Alalibo T, Kamoun S (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis related protease P69B. J Biol Chem 279:26370–26377

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Benedetti B, Kamoun S (2005) A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138:1785–1793

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377

    Article  PubMed  CAS  Google Scholar 

  • Tonón C, Guevara G, Oliva C, Daleo G (2002) Isolation of a potato acidic 39 kDa β-1,3-glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. J Phytopathol 150:189–195

    Article  Google Scholar 

  • van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, van Kammen A (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN” II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • van Loon LC, Pierpoint WS, Boller Th, Conejero V (1994) Recommendation for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264

    Article  Google Scholar 

  • VanEtten HD, Matthews DE, Matthews PS (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27:143–164

    Article  PubMed  CAS  Google Scholar 

  • Vinterhalter D, Zdravković-Korać S, Mitić N, Dragićević I, Cingel A, Raspor M, Ninković S (2008) Protocols for Agrobacterium-mediated transformation of potato. In: Benkeblia N, Tennant P (eds) Potato I. Fruit, vegetable and cereal science and biotechnology 2 (special issue 1):1–15

  • Vleeshouwers VGAA, Van Dooijeweert W, Govers F, Kamoun S, Colon LT (2000) Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans? Physiol Mol Plant Pathol 57:35–42

    Article  CAS  Google Scholar 

  • Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, Van der Vossen EAG (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3:e2875

    Article  PubMed  CAS  Google Scholar 

  • Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531

    Article  PubMed  CAS  Google Scholar 

  • Vutto NL, Gapeeva TA, Pundik AN, Tret’iakova TG, Volotovskiĭ ID (2010) Transgenic Belarussian-bred potato plants expressing genes for antimicrobial peptides of the cecropin–melittin type. (in Russian with English abstract) Genetika 46:1626–1634

    PubMed  CAS  Google Scholar 

  • Walsh TJ, Viviani MA, Arathoon E, Chiou C, Ghannoum M, Groll AH, Odds FC (2000) New targets and delivery systems for antifungal therapy. Med Mycol 38:335–347

    PubMed  CAS  Google Scholar 

  • Warner SAJ, Scott R, Draper J (1993) Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant J 3:191–201

    Article  PubMed  CAS  Google Scholar 

  • Wendt T, Doohan F, Mullins E (2012) Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–578

    Article  PubMed  CAS  Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  Google Scholar 

  • Woloshuk CP, Meulenho JS, Sela-Buurlage M, van Den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:619–628

    PubMed  CAS  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    PubMed  CAS  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Léon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    PubMed  CAS  Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692

    Article  PubMed  CAS  Google Scholar 

  • Yevtushenko DP, Sidorov VA, Romero R, Kay WW, Misra S (2004) Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Sci 167:715–724

    Article  CAS  Google Scholar 

  • Yu D, Liu Y, Fan B, Klessig DF, Chen Z (1997) Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol 115:343–349

    PubMed  CAS  Google Scholar 

  • Yun DJ, Bressan RA, Hasegawa PM (1997) Plant antifungal proteins. In: Janick J (ed) Plant breeding reviews, vol 14. John Wiley, New York, pp 39–88

    Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nat Biotechnol 12:807–812

    Article  CAS  Google Scholar 

  • Zhu B, Chen THH, Li PH (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 198:70–77

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Li Y, Vossen JH, Visser RGF, Jacobsen E (2012) Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99

  • Zook M, Hohn T, Bonnen A, Tsuji J, Hammerschmidt R (1996) Characterization of novel sesquiterpenoid biosynthesis in tobacco expressing a fungal sesquiterpene synthase. Plant Physiol 112:311–318

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Konkuk University, 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gururani, M.A., Park, S.W. Engineered resistance against filamentous pathogens in Solanum tuberosum . J Gen Plant Pathol 78, 377–388 (2012). https://doi.org/10.1007/s10327-012-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-012-0402-x

Keywords

Profiles

  1. Mayank Anand Gururani