Journal of General Plant Pathology

, Volume 75, Issue 3, pp 227–234 | Cite as

Bacterial DNA activates immunity in Arabidopsis thaliana

  • Suguru Yakushiji
  • Yasuhiro Ishiga
  • Yoshishige Inagaki
  • Kazuhiro Toyoda
  • Tomonori Shiraishi
  • Yuki IchinoseEmail author
Bacterial and Phytoplasma Diseases


To initiate defense responses against invasion of pathogenic organisms, animals and plants must recognize microbe-associated molecular patterns (MAMPs). In this study, the elicitor activity of bacterial DNA on the model plant Arabidopsis thaliana was examined. EcoRI-digested plasmid DNA induced defense responses such as generation of reactive oxygen species and deposition of callose, whereas SmaI- and HapII-digested plasmid DNA and EcoRI-digested herring DNA did not remarkably induce these responses. Further, methylation of the CpG sequence of plasmid DNA and Escherichia coli DNA reduced the level of the defense responses. The endocytosis inhibitors wortmannin and amantadine significantly inhibited DNA-induced defense responses. These results suggest that non-methylated CpG DNA, as a MAMP, induced defense responses in Arabidopsis and that non-methylated DNA seems to be translocated into the cytoplasm by endocytosis.


Arabidopsis thaliana Bacterial DNA CpG DNA Endocytosis MAMP Non-host resistance 





Microbe-associated molecular pattern


Toll-like receptor



We thank the Plant Cell Bank, RIKEN (Tokyo, Japan) for Arabidopsis T-87 suspension-cultured cells and Dr. Silke Robatzek (Max-Planck-Institute für Züchtungsforschung, Köln, Germany) for seeds of transgenic Arabidopsis Col-0 possessing the FRK1p:GUS chimeric gene.


  1. Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356PubMedCrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  3. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095PubMedCrossRefGoogle Scholar
  4. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128PubMedCrossRefGoogle Scholar
  5. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30:123–128Google Scholar
  6. Bauer S, Kirschning CJ, Häcker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98:9237–9242PubMedCrossRefGoogle Scholar
  7. Ellis J, Dodds P, Pryor T (2000) The generation of plant disease resistance gene specificities. Trends Plant Sci 5:373–379PubMedCrossRefGoogle Scholar
  8. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276PubMedCrossRefGoogle Scholar
  9. Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011PubMedCrossRefGoogle Scholar
  10. Gross A, Kapp D, Nielsen T, Niehaus K (2005) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165:215–226PubMedCrossRefGoogle Scholar
  11. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862PubMedCrossRefGoogle Scholar
  12. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282:32338–32348PubMedCrossRefGoogle Scholar
  13. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedCrossRefGoogle Scholar
  14. Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T (2001) Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiol Biochem 39:771–776CrossRefGoogle Scholar
  15. Jones DA, Takemoto D (2004) Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62PubMedCrossRefGoogle Scholar
  16. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549PubMedCrossRefGoogle Scholar
  17. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507PubMedCrossRefGoogle Scholar
  18. Leborgne-Castel N, Lherminier J, Der C, Fromentin J, Houot V, Simon-Plas F (2008) The plant defense elicitor cryptogein stimulates clathrin-mediated endocytosis correlated with reactive oxygen species production in bright yellow-2 tobacco cells. Plant Physiol 146:1255–1266PubMedCrossRefGoogle Scholar
  19. Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact 20:900–911PubMedCrossRefGoogle Scholar
  20. Livaja M, Zeidler D, von Rad U, Durner J (2008) Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 213:161–171PubMedCrossRefGoogle Scholar
  21. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618PubMedCrossRefGoogle Scholar
  22. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4:e1000213PubMedCrossRefGoogle Scholar
  23. Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Amino acid sequence of bacterial microbe-associate molecular pattern flg22 is required for virulence. Mol Plant Microbe Interact 21:1165–1174PubMedCrossRefGoogle Scholar
  24. Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542PubMedCrossRefGoogle Scholar
  25. Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615PubMedCrossRefGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  27. Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013PubMedCrossRefGoogle Scholar
  28. Taguchi F, Shimizu R, Nakajima R, Toyoda K, Shiraishi T, Ichinose Y (2003) Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol Biochem 41:165–174CrossRefGoogle Scholar
  29. Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM (2004) Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol 16:17–22PubMedCrossRefGoogle Scholar
  30. Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194CrossRefGoogle Scholar
  31. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487PubMedCrossRefGoogle Scholar
  32. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760PubMedCrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer 2009

Authors and Affiliations

  • Suguru Yakushiji
    • 1
  • Yasuhiro Ishiga
    • 1
    • 2
  • Yoshishige Inagaki
    • 1
  • Kazuhiro Toyoda
    • 1
  • Tomonori Shiraishi
    • 1
  • Yuki Ichinose
    • 1
    Email author
  1. 1.Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations