Skip to main content
Log in

Highly efficient thermo-photocatalytic degradation of tetracycline catalyzed by tungsten disulfide under visible light

  • OriginalPaper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Antibiotics are water and soil contaminants causing the development of multi-resistant bacteria, calling for advanced water treatments. For instance, photocatalysis is a promising technology to remove antibiotics at low cost. The tungsten disulfide (WS2) catalyst should be efficient because it possesses a small band gap of 1.35 eV which allows a wide range of light absorption; however, in practice, WS2 shows poor efficiency for antibiotic degradations. Here, we hypothesized that this drawback is due to the insufficient generation of reactive oxygen species. Therefore, we designed a thermo-photocatalytic process with in situ-generated heat under illumination for tetracycline degradation over WS2. We studied catalytic activities, the catalytic mechanism, reactive species, the degradation pathway, and the toxicity of degradation products. Results show that the removal of tetracycline reached 87.4%, which is 2.4 times that of individual thermal catalysis and 3.5 times that of room-temperature photocatalysis. Remarkably, mineralization was enhanced by 7.6 times and 30.9 times, respectively. Moreover, the acute toxicity, developmental toxicity, and mutagenicity of the aqueous solution were reduced after the thermo-photocatalytic degradation. This is the first time that WS2 is demonstrated as an efficient catalyst for visible-light-driven degradation of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Funding

This work was supported by National Science Foundation (CMMI-1661699) and ACS Petroleum Research Fund (PRF-60329-ND10). The authors also thank Charles and Carroll McArthur for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9565 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Zhang, W., Sun, K. et al. Highly efficient thermo-photocatalytic degradation of tetracycline catalyzed by tungsten disulfide under visible light. Environ Chem Lett 21, 1287–1295 (2023). https://doi.org/10.1007/s10311-022-01526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-022-01526-6

Keywords

Navigation