Abstract
Photoelectrochemical solar fuel generation requires a highly integrated technology for converting solar energy into chemical fuels. Dihydrogen (H2) and carbon-based fuels can be produced by water splitting and CO2 reduction, respectively. Material synthesis, device assembly, and performance of photoelectrochemical systems have rapidly improved in the last decade. More recently, research has shifted from developing single photoelectrodes to fabricating tandem photoelectrochemical cells. Here we review photoelectrochemical systems for solar fuel generation, with focus on photocathodes, photoanodes, protective layers and cocatalysts. We also present strategies for unassisted solar fuel generation.










Similar content being viewed by others
References
Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW (2015) A facile surface passivation of hematite photoanodes with TiO2 overlayers for efficient solar water splitting. ACS Appl Mater Interfaces 7:24053–24062. https://doi.org/10.1021/acsami.5b07065
Arai T, Sato S, Kajino T, Morikawa T (2013) Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ Sci 6:1274–1282. https://doi.org/10.1039/C3EE24317F
Bae D, Seger B, Vesborg PCK, Hansen O, Chorkendorff I (2017) Strategies for stable water splitting via protected photoelectrodes. Chem Soc Rev 46:1933–1954. https://doi.org/10.1039/c6cs00918b
Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344. https://doi.org/10.1021/ja0776327
Ben-Naim M, Britto RJ, Aldridge CW, Mow R, Steiner MA, Nielander AC, King LA, Friedman DJ, Deutsch TG, Young JL, Jaramillo TF (2020) Addressing the stability gap in photoelectrochemistry: molybdenum disulfide protective catalysts for tandem III–V unassisted solar water splitting. ACS Energy Lett 5:2631–2640. https://doi.org/10.1021/acsenergylett.0c01132
Cai Q, Hong W, Jian C, Li J, Liu W (2018) Insulator layer engineering toward stable Si photoanode for efficient water oxidation. ACS Catal 8:9238–9244. https://doi.org/10.1021/acscatal.8b01398
Cao S, Kang Z, Yu Y, Du J, German L, Li J, Yan X, Wang X, Zhang Y (2020) Tailored TiO2 protection layer enabled efficient and stable microdome structured p-GaAs photoelectrochemical cathodes. Adv Energy Mater 10:1902985. https://doi.org/10.1002/aenm.201902985
Chang X, Wang T, Gong J (2016a) CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9:2177–2196. https://doi.org/10.1039/c6ee00383d
Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J (2016b) Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem Int Ed 55:8840–8845. https://doi.org/10.1002/anie.201602973
Chang X, Wang T, Zhao Z-J, Yang P, Greeley J, Mu R, Zhang G, Gong Z, Luo Z, Chen J, Cui Y, Ozin GA, Gong J (2018) Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew Chem Int Ed 57:15415–15419. https://doi.org/10.1002/anie.201805256
Chen Q, Li J, Li X, Huang K, Zhou B, Shangguan W (2013) Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chemsuschem 6:1276–1281. https://doi.org/10.1002/cssc.201200936
Chen CI, Wu S, Lu YA, Lee CC, Ho KC, Zhu Z, Chen WC, Chueh CC (2019a) Enhanced near-infrared photoresponse of inverted perovskite solar cells through rational design of bulk-heterojunction electron-transporting layers. Adv Sci 6:1901714–1901714. https://doi.org/10.1002/advs.201901714
Chen J, Mao W, Ge B, Wang J, Ke X, Wang V, Wang Y, Döbeli M, Geng W, Matsuzaki H, Shi J, Jiang Y (2019b) Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3. Nat Commun 10:694–694. https://doi.org/10.1038/s41467-019-08613-3
Chen Y, Feng X, Liu Y, Guan X, Burda C, Guo L (2020) Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett 5:844–866. https://doi.org/10.1021/acsenergylett.9b02620
Chen Y, Liu Y, Wang F, Guan X, Guo L (2021) Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials. J Energy Chem 61:469–488. https://doi.org/10.1016/j.jechem.2021.02.003
Cheng WH, Richter MH, May MM, Ohlmann J, Lackner D, Dimroth F, Hannappel T, Atwater HA, Lewerenz HJ (2018) Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett 3:1795–1800. https://doi.org/10.1021/acsenergylett.8b00920
Cho HH, Yao L, Yum JH, Liu Y, Boudoire F, Wells RA, Guijarro N, Sekar A, Sivula K (2021) A semiconducting polymer bulk heterojunction photoanode for solar water oxidation. Nat Catal 4:431–438. https://doi.org/10.1038/s41929-021-00617-x
Choi M, Jung JY, Park MJ, Song JW, Lee JH, Bang JH (2014) Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution. J Mater Chem A 2:2928–2933. https://doi.org/10.1039/c3ta14443g
Chong R, Du Y, Chang Z, Jia Y, qiao Y, Liu S, Liu Y, Zhou Y, Li D, (2019) 2D Co-incorporated hydroxyapatite nanoarchitecture as a potential efficient oxygen evolution cocatalyst for boosting photoelectrochemical water splitting on Fe2O3 photoanode. Appl Catal B 250:224–233. https://doi.org/10.1016/j.apcatb.2019.03.038
Chu S, Ou P, Ghamari P, Vanka S, Zhou B, Shih I, Song J, Mi Z (2018) Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J Am Chem Soc 140:7869–7877. https://doi.org/10.1021/jacs.8b03067
Dai XC, Huang MH, Li YB, Li T, Zhang BB, He Y, Xiao G, Xiao FX (2019) Regulating spatial charge transfer over intrinsically ultrathin-carbon-encapsulated photoanodes toward solar water splitting. J Mater Chem A 7:2741–2753. https://doi.org/10.1039/C8TA10379H
Dang K, Wang T, Li C, Zhang J, Liu S, Gong J (2017) Improved oxygen evolution kinetics and surface states passivation of Ni-Bi co-catalyst for a hematite photoanode. Engineering 3:285–289. https://doi.org/10.1016/J.ENG.2017.03.005
Devasia D, Wilson AJ, Heo J, Mohan V, Jain PK (2021) A rich catalog of C-C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat Commun 12:2612. https://doi.org/10.1038/s41467-021-22868-9
Dias P, Schreier M, Tilley SD, Luo J, Azevedo J, Andrade L, Bi D, Hagfeldt A, Mendes A, Grätzel M, Mayer MT (2015) Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv Energy Mater 5:1501537. https://doi.org/10.1002/aenm.201501537
Ding C, Qin W, Wang N, Liu G, Wang Z, Yan P, Shi J, Li C (2014) Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Phys Chem Chem Phys 16:15608–15614. https://doi.org/10.1039/C4CP02391A
Ding P, Hu Y, Deng J, Chen J, Zha C, Yang H, Han N, Gong Q, Li L, Wang T, Zhao X, Li Y (2019) Controlled chemical etching leads to efficient silicon–bismuth interface for photoelectrochemical CO2 reduction to formate. Mater Today Chem 11:80–85. https://doi.org/10.1016/j.mtchem.2018.10.009
Fan R, Cheng S, Huang G, Wang Y, Zhang Y, Vanka S, Botton GA, Mi Z, Shen M (2019) Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni. J Mater Chem A 7:2200–2209. https://doi.org/10.1039/C8TA10165E
Fu Y, Lu YR, Ren F, Xing Z, Chen J, Guo P, Pong WF, Dong CL, Zhao L, Shen S (2020) Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation. Solar RRL 4:1900349. https://doi.org/10.1002/solr.201900349
Fu J, Liu K, Li H, Hu J, Liu M (2021) Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01335-3
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0
Gao L, Cui Y, Vervuurt RHJ, van Dam D, van Veldhoven RPJ, Hofmann JP, Bol AA, Haverkort JEM, Notten PHL, Bakkers EPAM, Hensen EJM (2016) High-efficiency inp-based photocathode for hydrogen production by interface energetics design and photon management. Adv Funct Mater 26:679–686. https://doi.org/10.1002/adfm.201503575
Garza AJ, Bell AT, Head-Gordon M (2018) Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal 8:1490–1499. https://doi.org/10.1021/acscatal.7b03477
Gu J, Aguiar JA, Ferrere S, Steirer KX, Yan Y, Xiao C, Young James L, Al-Jassim M, Neale NR, Turner JA (2017) A graded catalytic–protective layer for an efficient and stable water-splitting photocathode. Nat Energy 2:16192. https://doi.org/10.1038/nenergy.2016.192
Guo M, Ma G (2020) Alteration of onset potentials of Rh-doped SrTiO3 electrodes for photoelectrochemical water splitting. J Catal 391:241–246. https://doi.org/10.1016/j.jcat.2020.08.029
Gurudayal BJW, Bullock J, Wang H, Eichhorn J, Towle C, Javey A, Toma FM, Mathews N, Ager JW (2019) Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ Sci 12:1068–1077. https://doi.org/10.1039/C8EE03547D
Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116. https://doi.org/10.1038/275115a0
Han J, Zong X, Wang Z, Li C (2014) A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. Phys Chem Chem Phys 16:23544–23548. https://doi.org/10.1039/C4CP03731F
Hasija V, Kumar A, Sudhaik A, Raizada P, Singh P, Van Le Q, Le TT, Nguyen V-H (2021) Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environ Chem Lett 19:2941–2966. https://doi.org/10.1007/s10311-021-01231-w
Hassan MA, Kim M-W, Johar MA, Waseem A, Kwon M-K, Ryu S-W (2019) Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci Rep 9:20141. https://doi.org/10.1038/s41598-019-56807-y
Heller A, Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) cell. Phys Rev Lett 46:1153–1156. https://doi.org/10.1103/PhysRevLett.46.1153
Higashi T, Kaneko H, Minegishi T, Kobayashi H, Zhong M, Kuang Y, Hisatomi T, Katayama M, Takata T, Nishiyama H, Yamada T, Domen K (2017) Overall water splitting by photoelectrochemical cells consisting of (ZnSe)0.85(CuIn0.7Ga0.3Se2)0.15 photocathodes and BiVO4 photoanodes. Chem Commun 53:11674–11677. https://doi.org/10.1039/C7CC06637F
Hou Y, Zuo F, Dagg AP, Liu J, Feng P (2014) Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater 26:5043–5049. https://doi.org/10.1002/adma.201401032
Hou J, Cheng H, Takeda O, Zhu H (2015) Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting. Energy Environ Sci 8:1348–1357. https://doi.org/10.1039/C4EE03707C
Hou J, Cao S, Sun Y, Wu Y, Liang F, Lin Z, Sun L (2018) Atomically thin mesoporous In2O3–x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv Energy Mater 8:1701114. https://doi.org/10.1002/aenm.201701114
Huang D, Wang K, Li L, Feng K, An N, Ikeda S, Kuang Y, Ng Y, Jiang F (2021) 3.17% efficient Cu2ZnSnS4–BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. https://doi.org/10.1039/D0EE03892J
Ingler WB Jr, Khan SU (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem Solid-State Lett 9:G144
Jadwiszczak M, Jakubow-Piotrowska K, Kedzierzawski P, Bienkowski K, Augustynski J (2020) Highly efficient sunlight-driven seawater splitting in a photoelectrochemical cell with chlorine evolved at nanostructured WO3 photoanode and hydrogen stored as hydride within metallic cathode. Adv Energy Mater 10:1903213. https://doi.org/10.1002/aenm.201903213
Jeon TH, Bokare AD, Han DS, Abdel-Wahab A, Park H, Choi W (2017) Dual modification of hematite photoanode by Sn-doping and Nb2O5 layer for water oxidation. Appl Catal B 201:591–599. https://doi.org/10.1016/j.apcatb.2016.08.059
Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting – materials and challenges. Chem Soc Rev 46:4645–4660. https://doi.org/10.1039/C6CS00306K
Jiang C, Wu J, Moniz SJA, Guo D, Tang M, Jiang Q, Chen S, Liu H, Wang A, Zhang T, Tang J (2019) Stabilization of GaAs photoanodes by in situ deposition of nickel-borate surface catalysts as hole trapping sites. Sustain Energy Fuels 3:814–822. https://doi.org/10.1039/C8SE00265G
Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120:7984–8034. https://doi.org/10.1021/acs.chemrev.9b00723
Joyce HJ, Wong-Leung J, Yong C-K, Docherty CJ, Paiman S, Gao Q, Tan HH, Jagadish C, Lloyd-Hughes J, Herz LM, Johnston MB (2012) Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett 12:5325–5330. https://doi.org/10.1021/nl3026828
Kainthla RC, Zelenay B, Bockris JOM (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Am Chem Soc 134:841–845. https://doi.org/10.1149/1.2100583
Kalamaras E, Maroto-Valer MM, Shao M, Xuan J, Wang H (2018) Solar carbon fuel via photoelectrochemistry. Catal Today 317:56–75. https://doi.org/10.1016/j.cattod.2018.02.045
Kamata R, Kumagai H, Yamazaki Y, Sahara G, Ishitani O (2019) Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst connected to a vinyl polymer on a NiO electrode. ACS Appl Mater Interfaces 11:5632–5641. https://doi.org/10.1021/acsami.8b05495
Kamimura J, Bogdanoff P, Abdi FF, Lähnemann J, Rvd K, Riechert H, Geelhaar L (2017) Photoelectrochemical properties of GaN photoanodes with cobalt phosphate catalyst for solar water splitting in neutral electrolyte. J Phys Chem C 121:12540–12545. https://doi.org/10.1021/acs.jpcc.7b02253
Kaneko H, Minegishi T, Nakabayashi M, Shibata N, Kuang Y, Yamada T, Domen K (2016) A novel photocathode material for sunlight-driven overall water splitting: Solid solution of ZnSe and Cu(In, Ga)Se2. Adv Funct Mater 26:4570–4577. https://doi.org/10.1002/adfm.201600615
Kang U, Park H (2017) A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month. J Mater Chem A 5:2123–2131. https://doi.org/10.1039/C6TA09378G
Kang U, Choi SK, Ham DJ, Ji SM, Choi W, Han DS, Abdel-Wahab A, Park H (2015) Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci 8:2638–2643. https://doi.org/10.1039/C5EE01410G
Kang D, Young JL, Lim H, Klein WE, Chen H, Xi Y, Gai B, Deutsch TG, Yoon J (2017) Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat Energy 2:17043. https://doi.org/10.1038/nenergy.2017.43
Karuturi SK, Shen H, Sharma A, Beck FJ, Varadhan P, Duong T, Narangari PR, Zhang D, Wan Y, He J-H, Tan HH, Jagadish C, Catchpole K (2020) Over 17% efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers. Adv Energy Mater 10:2000772. https://doi.org/10.1002/aenm.202000772
Kempler PA, Gonzalez MA, Papadantonakis KM, Lewis NS (2018) Hydrogen evolution with minimal parasitic light absorption by dense Co-P catalyst films on structured p-Si photocathodes. ACS Energy Lett 3:612–617. https://doi.org/10.1021/acsenergylett.8b00034
Kempler PA, Richter MH, Cheng W-H, Brunschwig BS, Lewis NS (2020) Si microwire-array photocathodes decorated with cu allow CO2 reduction with minimal parasitic absorption of sunlight. ACS Energy Lett 5:2528–2534. https://doi.org/10.1021/acsenergylett.0c01334
Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425. https://doi.org/10.1126/science.280.5362.425
Kibria MG, Qiao R, Yang W, Boukahil I, Kong X, Chowdhury FA, Trudeau ML, Ji W, Guo H, Himpsel FJ, Vayssieres L, Mi Z (2016) Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv Mater 28:8388–8397. https://doi.org/10.1002/adma.201602274
Kim JH, Hansora D, Sharma P, Jang J-W, Lee JS (2019) Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev 48:1908–1971. https://doi.org/10.1039/C8CS00699G
Kiran S, Naveen Kumar SK (2018) Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells. Mater Today: Proc 5:10797–10804. https://doi.org/10.1016/j.matpr.2017.12.365
Kobayashi H, Sato N, Orita M, Kuang Y, Kaneko H, Minegishi T, Yamada T, Domen K (2018) Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ Sci 11:3003–3009. https://doi.org/10.1039/C8EE01783B
Kong Q, Kim D, Liu C, Yu Y, Su Y, Li Y, Yang P (2016) Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction. Nano Lett 16:5675–5680. https://doi.org/10.1021/acs.nanolett.6b02321
Kong W, Zhang X, Liu S, Zhou Y, Chang B, Zhang S, Fan H, Yang B (2019) N doped carbon dot modified WO3 nanoflakes for efficient photoelectrochemical water oxidation. Adv Mater Interfaces 6:1801653. https://doi.org/10.1002/admi.201801653
Kornblum L, Fenning DP, Faucher J, Hwang J, Boni A, Han MG, Morales-Acosta MD, Zhu Y, Altman EI, Lee ML, Ahn CH, Walker FJ, Shao-Horn Y (2017) Solar hydrogen production using epitaxial SrTiO3 on a GaAs photovoltaic. Energy Environ Sci 10:377–382. https://doi.org/10.1039/C6EE03170F
Kuang Y, Jia Q, Nishiyama H, Yamada T, Kudo A, Domen K (2016) A front-illuminated nanostructured transparent BiVO4 photoanode for > 2% efficient water splitting. Adv Energy Mater 6:1501645
Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467. https://doi.org/10.1021/ja992541y
Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223. https://doi.org/10.1021/jp105171b
Kumar N, Seriani N, Gebauer R (2020) DFT insights into electrocatalytic CO2 reduction to methanol on α-Fe2O3(0001) surfaces. Phys Chem Chem Phys 22:10819–10827. https://doi.org/10.1039/C9CP06453B
LaTempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4:2245–2250. https://doi.org/10.1039/C2NR00052K
Lee MH, Takei K, Zhang J, Kapadia R, Zheng M, Chen Y-Z, Nah J, Matthews TS, Chueh Y-L, Ager JW, Javey A (2012) P-type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew Chem Int Ed 51:10760–10764. https://doi.org/10.1002/anie.201203174
Leung JJ, Warnan J, Ly KH, Heidary N, Nam DH, Kuehnel MF, Reisner E (2019) Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat Catal 2:354–365. https://doi.org/10.1038/s41929-019-0254-2
Li M, Luo W, Cao D, Zhao X, Li Z, Yu T, Zou Z (2013) A co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew Chem Int Ed 52:11016–11020
Li CW, Ciston J, Kanan MW (2014) Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508:504–507. https://doi.org/10.1038/nature13249
Li C, Wang T, Liu B, Chen M, Li A, Zhang G, Du M, Wang H, Liu SF, Gong J (2019a) Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials. Energy Environ Sci 12:923–928. https://doi.org/10.1039/C8EE02768D
Li H, Wen P, Itanze DS, Hood ZD, Ma X, Kim M, Adhikari S, Lu C, Dun C, Chi M, Qiu Y, Geyer SM (2019b) Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat Commun 10:5724. https://doi.org/10.1038/s41467-019-13388-8
Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921. https://doi.org/10.1038/nmat3151
Liu Y, Guo L (2020) On factors limiting the performance of photoelectrochemical CO2 reduction. J Chem Phys 152:100901. https://doi.org/10.1063/1.5141390
Liu Y, Li J, Zhou B, Bai J, Zheng Q, Zhang J, Cai W (2009) Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte. Environ Chem Lett 7:363–368. https://doi.org/10.1007/s10311-008-0180-z
Liu R, Zheng Z, Spurgeon J, Yang X (2014) Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci 7:2504–2517. https://doi.org/10.1039/C4EE00450G
Liu Y, Wei C, Ngaw CK, Zhou Y, Sun S, Xi S, Du Y, Loo JSC, Ager JW, Xu ZJ (2018) Operando Investigation of Mn3O4+δ Co-catalyst on Fe2O3 Photoanode: Manganese-Valency-Determined Enhancement at Varied Potentials. ACS Appl Energy Mater 1:814–821. https://doi.org/10.1021/acsaem.7b00267
Liu G, Zheng F, Li J, Zeng G, Ye Y, Larson DM, Yano J, Crumlin EJ, Ager JW, Wang L-w, Toma FM (2021) Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat. Energy. https://doi.org/10.1038/s41560-021-00927-1
May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286. https://doi.org/10.1038/ncomms9286
Meng L, Wang M, Sun H, Tian W, Xiao C, Wu S, Cao F, Li L (2020) Designing a transparent CdIn2S4/In2S3 bulk-heterojunction photoanode integrated with a perovskite solar cell for unbiased water splitting. Adv Mater 32:2002893. https://doi.org/10.1002/adma.202002893
Mi Q, Ping Y, Li Y, Cao B, Brunschwig BS, Khalifah PG, Galli GA, Gray HB, Lewis NS (2012) Thermally stable N2-intercalated WO3 photoanodes for water oxidation. J Am Chem Soc 134:18318–18324. https://doi.org/10.1021/ja3067622
Monny SA, Zhang L, Wang Z, Luo B, Konarova M, Du A, Wang L (2020) Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting. J Mater Chem A 8:2498–2504. https://doi.org/10.1039/C9TA10975G
Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi K-S, Grimes CA (2008) P-type Cu−Ti−O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906–1911. https://doi.org/10.1021/nl080572y
Nie X, Esopi MR, Janik MJ, Asthagiri A (2013) Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed 52:2459–2462. https://doi.org/10.1002/anie.201208320
Ochedi FO, Liu D, Yu J, Hussain A, Liu Y (2021) Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review. Environ Chem Lett 19:941–967. https://doi.org/10.1007/s10311-020-01131-5
Oener SZ, Cavalli A, Sun H, Haverkort JEM, Bakkers EPAM, Garnett EC (2018) Charge carrier-selective contacts for nanowire solar cells. Nat Commun 9:3248–3248. https://doi.org/10.1038/s41467-018-05453-5
Ohashi K, McCann J, Bockris JOM (1977) Stable photoelectrochemical cells for the splitting of water. Nature 266:610–611. https://doi.org/10.1038/266610a0
Pan L, Kim JH, Mayer MT, Son M-K, Ummadisingu A, Lee JS, Hagfeldt A, Luo J, Grätzel M (2018) Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal 1:412–420. https://doi.org/10.1038/s41929-018-0077-6
Pan L, Liu Y, Yao L, Dan R, Sivula K, Grätzel M, Hagfeldt A (2020a) Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat Commun 11:318. https://doi.org/10.1038/s41467-019-13987-5
Pan Q, Li A, Zhang Y, Yang Y, Cheng C (2020b) Rational design of 3D hierarchical ternary SnO2/TiO2/BiVO4 arrays photoanode toward efficient photoelectrochemical performance. Adv Sci 7:1902235. https://doi.org/10.1002/advs.201902235
Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461. https://doi.org/10.1038/nmat3017
Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315. https://doi.org/10.1039/c0ee00071j
Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S, Makita K, Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141. https://doi.org/10.1038/srep11141
Pihosh Y, Nandal V, Minegishi T, Katayama M, Yamada T, Seki K, Sugiyama M, Domen K (2020) Development of a core–shell heterojunction Ta3N5-nanorods/BaTaO2N photoanode for solar water splitting. ACS Energy Lett 5:2492–2497. https://doi.org/10.1021/acsenergylett.0c00900
Ping Y, Nielsen RJ, Goddard WA (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J Am Chem Soc 139:149–155. https://doi.org/10.1021/jacs.6b07557
Qiu Y, Chen W, Yang S (2010) Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 49:3675–3679. https://doi.org/10.1002/anie.200906933
Qiu J, Zeng G, Ha M-A, Ge M, Lin Y, Hettick M, Hou B, Alexandrova AN, Javey A, Cronin SB (2015) Artificial photosynthesis on TiO2-passivated InP nanopillars. Nano Lett 15:6177–6181. https://doi.org/10.1021/acs.nanolett.5b02511
Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648. https://doi.org/10.1126/science.1209816
Respinis Md, Joya KS, De Groot HJM, D’Souza F, Smith WA, Rvd K, Dam B (2015) Solar water splitting combining a BiVO4 light absorber with a Ru-based molecular cocatalyst. J Phys Chem C 119:7275–7281. https://doi.org/10.1021/acs.jpcc.5b00287
Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003. https://doi.org/10.1038/s41570-016-0003
Rothschild A, Dotan H (2017) Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett 2:45–51. https://doi.org/10.1021/acsenergylett.6b00610
Royer M (1870) Réduction de l’acide carbonique en acide formique. Comptes Rendus 1870:731–732
Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133:15240–15243. https://doi.org/10.1021/ja204881d
Sauvage F, Di Fonzo F, Li Bassi A, Casari CS, Russo V, Divitini G, Ducati C, Bottani CE, Comte P, Graetzel M (2010) Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett 10:2562–2567. https://doi.org/10.1021/nl101198b
Schreier M, Gao P, Mayer MT, Luo J, Moehl T, Nazeeruddin MK, Tilley SD, Graetzel M (2015a) Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst. Energy Environ Sci 8:855–861. https://doi.org/10.1039/c4ee03454f
Schreier M, Gao P, Mayer MT, Luo JS, Moehl T, Nazeeruddin MK, Tilley SD, Gratzel M (2015b) Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst. Energy Environ Sci 8:855–861. https://doi.org/10.1039/c4ee03454f
Schreier M, Luo J, Gao P, Moehl T, Mayer MT, Graetzel M (2016) Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J Am Chem Soc 138:1938–1946. https://doi.org/10.1021/jacs.5b12157
Schulz F, Pavelka O, Lehmkühler F, Westermeier F, Okamura Y, Mueller NS, Reich S, Lange H (2020) Structural order in plasmonic superlattices. Nat Commun 11:3821–3821. https://doi.org/10.1038/s41467-020-17632-4
Seger B, Laursen AB, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Chorkendorff I (2012) Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew Chem Int Ed 51:9128–9131. https://doi.org/10.1002/anie.201203585
Seger B, Pedersen T, Laursen AB, Vesborg PCK, Hansen O, Chorkendorff I (2013) Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J Am Chem Soc 135:1057–1064. https://doi.org/10.1021/ja309523t
Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355:eaad4998. https://doi.org/10.1126/science.aad4998
Shaner MR, Atwater HA, Lewis NS, McFarland EW (2016) A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ Sci 9:2354–2371. https://doi.org/10.1039/C5EE02573G
Shao C, Malik AS, Han J, Li D, Dupuis M, Zong X, Li C (2020) Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode. Nano Energy 77:105190. https://doi.org/10.1016/j.nanoen.2020.105190
Sharma P, Jang J-W, Lee JS (2019) Key strategies to advance the photoelectrochemical water splitting performance of α-Fe2O3 photoanode. ChemCatChem 11:157–179. https://doi.org/10.1002/cctc.201801187
Sivula K, Krol Rvd (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1:15010. https://doi.org/10.1038/natrevmats.2015.10
Spijker Hvt, Simon D, Ooms F (2008) Photocatalytic water splitting by means of undoped and doped La2CuO4 photocathodes. Int J Hydrog Energy 33:6414–6419. https://doi.org/10.1016/j.ijhydene.2008.08.023
Spurgeon JM, Walter MG, Zhou J, Kohl PA, Lewis NS (2011) Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ Sci 4:1772–1780. https://doi.org/10.1039/C1EE01028J
Sun K, Liu R, Chen Y, Verlage E, Lewis NS, Xiang C (2016) A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state ph gradients and product separation enabled by a bipolar membrane. Adv Energy Mater 6:1600379. https://doi.org/10.1002/aenm.201600379
Sun J-F, Wu J-T, Xu Q-Q, Zhou D, Yin J-Z (2020) CO2 electrochemical reduction using single-atom catalysts. Preparation, characterization and anchoring strategies: a review. Environ Chem Lett 18:1593–1623. https://doi.org/10.1007/s10311-020-01023-8
Tang S, Li M, Huang D, Qiu W, Xiao S, Tong Y, Yang S (2019) 3D hierarchical nanorod@nanobowl array photoanode with a tunable light-trapping cutoff and bottom-selective field enhancement for efficient solar water splitting. Small 15:1804976. https://doi.org/10.1002/smll.201804976
Tang S, Qiu W, Xiao S, Tong Y, Yang S (2020) Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ Sci 13:660–684. https://doi.org/10.1039/C9EE02986A
Tay YF, Kaneko H, Chiam SY, Lie S, Zheng Q, Wu B, Hadke SS, Su Z, Bassi PS, Bishop D, Sum TC, Minegishi T, Barber J, Domen K, Wong LH (2018) Solution-processed Cd-substituted CZTS photocathode for efficient solar hydrogen evolution from neutral water. Joule 2:537–548. https://doi.org/10.1016/j.joule.2018.01.012
Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39:163–184. https://doi.org/10.1016/S0022-0728(72)80485-6
Trocino S, Lo Vecchio C, Campagna Zignani S, Carbone A, Saccà A, Baglio V, Gómez R, Aricò AS (2020) Dry hydrogen production in a tandem critical raw material-free water photoelectrolysis cell using a hydrophobic gas-diffusion backing layer. Catalysts 10:1319
Vanka S, Arca E, Cheng S, Sun K, Botton GA, Teeter G, Mi Z (2018) High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett 18:6530–6537. https://doi.org/10.1021/acs.nanolett.8b03087
Varadhan P, Fu HC, Kao YC, Horng RH, He JH (2019) An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Nat Commun 10:5282. https://doi.org/10.1038/s41467-019-12977-x
Verlage E, Hu S, Liu R, Jones RJR, Sun K, Xiang C, Lewis NS, Atwater HA (2015) A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ Sci 8:3166–3172. https://doi.org/10.1039/C5EE01786F
Vijselaar W, Westerik P, Veerbeek J, Tiggelaar RM, Berenschot E, Tas NR, Gardeniers H, Huskens J (2018) Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes. Nat Energy 3:185–192. https://doi.org/10.1038/s41560-017-0068-x
Voiry D, Shin HS, Loh KP, Chhowalla M (2018) Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem 1:0105
Wang H-P, Sun K, Noh SY, Kargar A, Tsai M-L, Huang M-Y, Wang D, He J-H (2015) High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett 15:2817–2824. https://doi.org/10.1021/nl5041463
Wang D, Yan B, Guo Y, Chen L, Yu F, Wang G (2019a) N-doped carbon coated CoO nanowire arrays derived from zeolitic imidazolate framework-67 as binder-free anodes for high-performance lithium storage. Sci Rep 9:5934–5934. https://doi.org/10.1038/s41598-019-42371-y
Wang Y, Schwartz J, Gim J, Hovden R, Mi Z (2019b) Stable unassisted solar water splitting on semiconductor photocathodes protected by multifunctional GaN nanostructures. ACS Energy Lett 4:1541–1548. https://doi.org/10.1021/acsenergylett.9b00549
Wang Y, Wu Y, Schwartz J, Sung SH, Hovden R, Mi Z (2019c) A single-junction cathodic approach for stable unassisted solar water splitting. Joule 3:2444–2456. https://doi.org/10.1016/j.joule.2019.07.022
Wang Z, Zhang L, Schülli TU, Bai Y, Monny SA, Du A, Wang L (2019d) Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew Chem Int Ed 58:17604–17609. https://doi.org/10.1002/anie.201909182
Wang X, Wang Z, García de Arquer FP, Dinh C-T, Ozden A, Li YC, Nam D-H, Li J, Liu Y-S, Wicks J, Chen Z, Chi M, Chen B, Wang Y, Tam J, Howe JY, Proppe A, Todorović P, Li F, Zhuang T-T, Gabardo CM, Kirmani AR, McCallum C, Hung S-F, Lum Y, Luo M, Min Y, Xu A, O’Brien CP, Stephen B, Sun B, Ip AH, Richter LJ, Kelley SO, Sinton D, Sargent EH (2020a) Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy 5:478–486. https://doi.org/10.1038/s41560-020-0607-8
Wang Y, Shang X, Shen J, Zhang Z, Wang D, Lin J, Wu JCS, Fu X, Wang X, Li C (2020b) Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun 11:3043. https://doi.org/10.1038/s41467-020-16742-3
Winkler MT, Cox CR, Nocera DG, Buonassisi T (2013) Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. Proc Natl Acad Sci USA 110:E1076–E1082. https://doi.org/10.1073/pnas.1301532110
Wu F, Liao Q, Cao F, Li L, Zhang Y (2017a) Non-noble bimetallic NiMoO4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting. Nano Energy 34:8–14. https://doi.org/10.1016/j.nanoen.2017.02.004
Wu F, Yu Y, Yang H, German LN, Li Z, Chen J, Yang W, Huang L, Shi W, Wang L, Wang X (2017b) Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system. Adv Mater 29:1701432. https://doi.org/10.1002/adma.201701432
Xiao S, Hu C, Lin H, Meng X, Bai Y, Zhang T, Yang Y, Qu Y, Yan K, Xu J, Qiu Y, Yang S (2017) Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. J Mater Chem A 5:19091–19097. https://doi.org/10.1039/C7TA06309A
Yoneyama H, Sakamoto H, Tamura H (1975) A Photo-electrochemical cell with production of hydrogen and oxygen by a cell reaction. Electrochim Acta 20:341–345. https://doi.org/10.1016/0013-4686(75)90016-X
Young JL, Steiner MA, Döscher H, France RM, Turner JA, Deutsch Todd G (2017) Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat Energy 2:17028. https://doi.org/10.1038/nenergy.2017.28
Yu Y, Zhang Z, Yin X, Kvit A, Liao Q, Kang Z, Yan X, Zhang Y, Wang X (2017) Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat Energy 2:17045. https://doi.org/10.1038/nenergy.2017.45
Yuan J, Yang L, Hao C (2019) Communication—lithium-doped CuFeO2 thin film electrodes for photoelectrochemical reduction of carbon dioxide to methanol. J Am Chem Soc 166:H718. https://doi.org/10.1149/2.0921914jes
Zhang H, Ding Q, He D, Liu H, Liu W, Li Z, Yang B, Zhang X, Lei L, Jin S (2016a) A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ Sci 9:3113–3119. https://doi.org/10.1039/C6EE02215D
Zhang K, Ma M, Li P, Wang DH, Park JH (2016b) Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv Energy Mater 6:1600602. https://doi.org/10.1002/aenm.201600602
Zhang Z, Gao C, Wu Z, Han W, Wang Y, Fu W, Li X, Xie E (2016c) Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy 19:318–327. https://doi.org/10.1016/j.nanoen.2015.11.011
Zhang N, Long R, Gao C, Xiong Y (2018) Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater 61:771–805. https://doi.org/10.1007/s40843-017-9151-y
Zhang T, Qi H, Liao Z, Horev YD, Panes-Ruiz LA, Petkov PS, Zhang Z, Shivhare R, Zhang P, Liu K, Bezugly V, Liu S, Zheng Z, Mannsfeld S, Heine T, Cuniberti G, Haick H, Zschech E, Kaiser U, Dong R, Feng X (2019) Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat Commun 10:4225–4225. https://doi.org/10.1038/s41467-019-11921-3
Zhang D, Cao Y, Karuturi SK, Du M, Liu M, Xue C, Chen R, Wang P, Zhang J, Shi J, Liu SF (2020a) Enabling unassisted solar water splitting by single-junction amorphous silicon photoelectrodes. ACS Appl Energy Mater 3:4629–4637. https://doi.org/10.1021/acsaem.0c00296
Zhang H, Chen Y, Wang H, Wang H, Ma W, Zong X, Li C (2020b) Carbon encapsulation of organic–inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv Energy Mater 10:2002105. https://doi.org/10.1002/aenm.202002105
Zhang S, Shen L, Ye T, Kong K, Ye H, Ding H, Hu Y, Hua J (2020c) Noble-metal-free perovskite–BiVO4 tandem device with simple preparation method for unassisted solar water splitting. Energy Fuels 34:5016–5023. https://doi.org/10.1021/acs.energyfuels.0c00432
Zhao J, Minegishi T, Zhang L, Zhong M, Gunawan NM, Ma G, Hisatomi T, Katayama M, Ikeda S, Shibata N, Yamada T, Domen K (2014) Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition–sulfurization method. Angew Chem Int Ed 53:11808–11812. https://doi.org/10.1002/anie.201406483
Zhou X, Xiang C (2018) Comparative analysis of solar-to-fuel conversion efficiency: a direct, one-step electrochemical CO2 reduction reactor versus a two-step, cascade electrochemical CO2 reduction reactor. ACS Energy Lett 3:1892–1897. https://doi.org/10.1021/acsenergylett.8b01077
Zhou X, Liu R, Sun K, Chen Y, Verlage E, Francis SA, Lewis NS, Xiang C (2016) Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III–V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett 1:764–770. https://doi.org/10.1021/acsenergylett.6b00317
Zhou S, Tang R, Zhang L, Yin L (2017) Au nanoparticles coupled three-dimensional macroporous BiVO4/SnO2 inverse opal heterostructure for efficient photoelectrochemical water splitting. Electrochim Acta 248:593–602. https://doi.org/10.1016/j.electacta.2017.07.058
Acknowledgments
This work is supported by the National Natural Science Foundation of China (Grant No. 51906199) and the China Postdoctoral Science Foundation Funded Project (No. 2019M663703).
Funding
National Natural Science Foundation of China, 51906199, Ya Liu, Postdoctoral Research Foundation of China, 2019M663703,Ya Liu.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Y., Bai, S., Wang, F. et al. Photoelectrochemical technology for solar fuel generation, from single photoelectrodes to unassisted cells: a review. Environ Chem Lett 20, 1169–1192 (2022). https://doi.org/10.1007/s10311-021-01364-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-021-01364-y
