Skip to main content

Edible films and coatings for food packaging applications: a review

Abstract

Food preservation technologies are currently facing challenges in prolonging the shelf life of perishable food products. The uses of edible films and coatings developed from food biopolymers have advanced significantly during the last few years. Edible packaging is consumable and made from food-grade biopolymers, including lipids, proteins, and polysaccharides from plants, animals, and marine life or food processing by-products. Here we review natural polymer and bioactive compounds integrated into edible films and coatings, and their effects on food quality attributes. We present preparation techniques for edible films and coatings, and properties such as antimicrobial, antioxidant, physical, and sensory. Récent trends on film composition, nanotechnology in edible films, and safety concerns are reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig. 8

References

  1. Abdollahzadeh E, Nematollahi A, Hosseini H (2021) Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: a review. Trends Food Sci Technol 110:291–303. https://doi.org/10.1016/j.tifs.2021.01.084

    CAS  Article  Google Scholar 

  2. Abu Salha B, Gedanken A (2021) Extending the shelf life of strawberries by the sonochemical coating of their surface with nanoparticles of an edible anti-bacterial compound. Appl Nano 2:14–24. https://doi.org/10.3390/APPLNANO2010002

    Article  Google Scholar 

  3. Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O (2017) Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends Food Sci Technol 60:12–22. https://doi.org/10.1016/j.tifs.2016.10.027

    CAS  Article  Google Scholar 

  4. Alotaibi S, Tahergorabi R (2018) Development of a sweet potato starch-based coating and its effect on quality attributes of shrimp during refrigerated storage. LWT - Food Sci Technol 88:203–209. https://doi.org/10.1016/j.lwt.2017.10.022

    CAS  Article  Google Scholar 

  5. Andevari GT, Rezaei M (2011) Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. Int J Food Sci Technol 46:2305–2311. https://doi.org/10.1111/J.1365-2621.2011.02750.X

    CAS  Article  Google Scholar 

  6. Arshad R, Sameen A, Huma N, Zia MA (2020) Exploring the potential of active edible coating on the shelf stability of dairy products Pakistan. J Agric Sci. https://doi.org/10.21162/PAKJAS/20.8182

  7. Asada C, Suzuki A, Nakamura Y (2021) Production and antioxidant activity of phenolic compounds from indigo plant waste using pressurized microwave-assisted hydrothermal treatment followed by water extraction. Biomass Convers Biorefinery 2021:1–9. https://doi.org/10.1007/S13399-021-01758-6

    Article  Google Scholar 

  8. Çakmak H, Özselek Y, Turan OY et al (2020) Whey protein isolate edible films incorporated with essential oils: antimicrobial activity and barrier properties. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109285

    Article  Google Scholar 

  9. Campos CA, Gerschenson LN (2010) Flores SK (2010) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 46(4):849–875. https://doi.org/10.1007/S11947-010-0434-1

    Article  Google Scholar 

  10. Cao L, Ge T, Meng F et al (2020) An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nanocrystal whisker. Food Hydrocoll 98:105251. https://doi.org/10.1016/j.foodhyd.2019.105251

    CAS  Article  Google Scholar 

  11. Cazón P, Velazquez G, Ram\’\irez JA, Vázquez M, (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    CAS  Article  Google Scholar 

  12. Cerqueira MAPR, Pereira RNC, da Silva Ramos OL, Teixeira JAC, Vicente AA (eds) (2017) Edible food packaging: materials and processing technologies

  13. Chawla R, Sivakumar S, Kaur H (2021) Antimicrobial edible films in food packaging: current scenario and recent nanotechnological advancements- a review. Carbohydr Polym Technol Appl 2:100024. https://doi.org/10.1016/j.carpta.2020.100024

    Article  Google Scholar 

  14. Chen H, Sun Z, Yang H (2019) Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Sci Hortic 244:157–164. https://doi.org/10.1016/j.scienta.2018.09.039

    CAS  Article  Google Scholar 

  15. Cheng Y, Sun C, Zhai X et al (2021) Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int J Biol Macromol 185:1005–1014. https://doi.org/10.1016/j.ijbiomac.2021.06.203

    CAS  Article  Google Scholar 

  16. Chi H, Song S, Luo M, Zhang C, Li W, Li L, Qin Y (2019) Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci Hortic (amsterdam) 249:192–198. https://doi.org/10.1016/J.SCIENTA.2019.01.059

    CAS  Article  Google Scholar 

  17. Cho SY, Lee SY, Rhee C (2010) Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. LWT - Food Sci Technol 43:1234–1239. https://doi.org/10.1016/j.lwt.2010.03.014

    CAS  Article  Google Scholar 

  18. Chrysargyris A, Nikou A, Tzortzakis N (2016) Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality. New Zeal J Crop Hortic Sci 44:203–217. https://doi.org/10.1080/01140671.2016.1181661

    CAS  Article  Google Scholar 

  19. Costa MJ, Maciel LC, Teixeira JA et al (2018) Use of edible films and coatings in cheese preservation: opportunities and challenges. Food Res Int 107:84–92. https://doi.org/10.1016/j.foodres.2018.02.013

    CAS  Article  Google Scholar 

  20. Cruz-Diaz K, Cobos Á, Fernández-Valle ME et al (2019) Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase application in cheese slices packaging. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100397

    Article  Google Scholar 

  21. Dai L, Zhang J, Cheng F (2020) Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem 311:125891. https://doi.org/10.1016/j.foodchem.2019.125891

    CAS  Article  Google Scholar 

  22. Daniloski D, Petkoska AT, Lee NA et al (2021) Active edible packaging based on milk proteins: a route to carry and deliver nutraceuticals. Trends Food Sci Technol 111:688–705. https://doi.org/10.1016/j.tifs.2021.03.024

    CAS  Article  Google Scholar 

  23. De León-Zapata MA, Ventura-Sobrevilla JM, Salinas-Jasso TA et al (2018) Changes of the shelf life of candelilla wax/tarbush bioactive based-nanocoated apples at industrial level conditions. Sci Hortic (amsterdam) 231:43–48. https://doi.org/10.1016/j.scienta.2017.12.005

    CAS  Article  Google Scholar 

  24. De Oliveira Júnior SD, de Araújo JS, de Asevedo EA et al (2021) Exploiting films based on pectin extracted from yellow mombin (Spondias mombin L.) peel for active food packaging. Biomass Convers Biorefinery 2021:1–15. https://doi.org/10.1007/S13399-021-01321-3

    Article  Google Scholar 

  25. Dehghani S, Hosseini SV, Regenstein JM (2018) Edible films and coatings in seafood preservation: a review. Food Chem 240:505–513. https://doi.org/10.1016/J.FOODCHEM.2017.07.034

    CAS  Article  Google Scholar 

  26. Di Pierro P, Sorrentino A, Mariniello L et al (2011) Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT - Food Sci Technol 44:2324–2327. https://doi.org/10.1016/j.lwt.2010.11.031

    CAS  Article  Google Scholar 

  27. Fernández-Pan I, Carrión-Granda X, Maté JI (2014) Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control 36:69–75. https://doi.org/10.1016/J.FOODCONT.2013.07.032

    Article  Google Scholar 

  28. Gaikwad KK, Lee JY, Lee YS (2016) Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J Food Sci Technol 53:1608–1619. https://doi.org/10.1007/S13197-015-2104-9

    CAS  Article  Google Scholar 

  29. Gaikwad KK, Singh S, Negi YS, Lee YS (2020) The effect of trans-polyisoprene/LDPE based active films on oxidative stability in roasted peanuts. J Food Meas Charact 14:1857–1864. https://doi.org/10.1007/s11694-020-00433-0

    Article  Google Scholar 

  30. Galus S, Kibar EAA, Gniewosz M, Kraśniewska K (2020) Novel materials in the preparation of edible films and coatings-a review. Coatings 10:1–14. https://doi.org/10.3390/coatings10070674

    CAS  Article  Google Scholar 

  31. Ghidelli C, Rojas-Argudo C, Mateos M, Pérez-Gago MB (2013) Effect of antioxidants in controlling enzymatic browning of minimally processed persimmon ‘Rojo Brillante.’ Postharvest Biol Technol 86:487–493. https://doi.org/10.1016/J.POSTHARVBIO.2013.07.034

    CAS  Article  Google Scholar 

  32. Guerreiro AC, Gago CML, Faleiro ML et al (2015) The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol Technol 110:51–60. https://doi.org/10.1016/J.POSTHARVBIO.2015.06.019

    CAS  Article  Google Scholar 

  33. Gupta V, Ramakanth D, Verma C, Maji PK, Gaikwad KK (2021) Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01852-9

    Article  Google Scholar 

  34. Hassan B, Chatha SAS, Hussain AI et al (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

    CAS  Article  Google Scholar 

  35. Hassanpour H (2015) Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT - Food Sci Technol 60:495–501. https://doi.org/10.1016/J.LWT.2014.07.049

    CAS  Article  Google Scholar 

  36. Hossain MA (2021) Hossain MS (2021) Optimization of antioxidative phenolic compound extraction from freeze-dried pulp, peel, and seed of Burmese grape (Baccaurea ramiflora Lour.) by response surface methodology. Biomass Convers Biorefinery 1:1–15. https://doi.org/10.1007/S13399-021-01761-X

    Article  Google Scholar 

  37. Hu B, Guo Y, Li H et al (2021) Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr Polym 271:118427. https://doi.org/10.1016/J.CARBPOL.2021.118427

    CAS  Article  Google Scholar 

  38. Indumathi MP, Saral Sarojini K, Rajarajeswari GR (2019) Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int J Biol Macromol 132:1112–1120. https://doi.org/10.1016/J.IJBIOMAC.2019.03.171

    CAS  Article  Google Scholar 

  39. Issa A, Ibrahim SA, Tahergorabi R (2017) Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods 6:1–13. https://doi.org/10.3390/foods6060043

    CAS  Article  Google Scholar 

  40. Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol 1:415–448. https://doi.org/10.1146/annurev.food.080708.100836

    CAS  Article  Google Scholar 

  41. Jeya Jeevahan J, Chandrasekaran M, Venkatesan SP et al (2020) Scaling up difficulties and commercial aspects of edible films for food packaging: a review. Trends Food Sci Technol 100:210–222. https://doi.org/10.1016/j.tifs.2020.04.014

    CAS  Article  Google Scholar 

  42. Jiang Y, Lan W, Sameen DE et al (2020) Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. Int J Biol Macromol 160:340–351. https://doi.org/10.1016/j.ijbiomac.2020.05.202

    CAS  Article  Google Scholar 

  43. Jiang M, Liu S, Wang Y (2011) Effects of antimicrobial coating from catfish skin gelatin on quality and shelf life of fresh white shrimp (Penaeus vannamei). J Food Sci. https://doi.org/10.1111/J.1750-3841.2011.02056.X

    Article  Google Scholar 

  44. Kadam AA, Singh S, Gaikwad KK (2021) Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control 124:107877. https://doi.org/10.1016/J.FOODCONT.2021.107877

    CAS  Article  Google Scholar 

  45. Kanikireddy V, Kanny K, Padma Y et al (2019) Development of alginate-gum acacia-Ag nanocomposites via green process for inactivation of foodborne bacteria and impact on shelf life of black grapes (Vitis vinifera). J Appl Polym Sci 136:47331. https://doi.org/10.1002/APP.47331

    Article  Google Scholar 

  46. Kazemi SM, Rezaei M (2015) Antimicrobial effectiveness of gelatin-alginate film containing oregano essential oil for fish preservation. J Food Saf 35:482–490. https://doi.org/10.1111/jfs.12198

    CAS  Article  Google Scholar 

  47. Kontominas MG (2020) Use of alginates as food packaging materials. Foods. https://doi.org/10.3390/foods9101440

  48. Konuk Takma D, Korel F (2019) Active packaging films as a carrier of black cumin essential oil: development and effect on quality and shelf-life of chicken breast meat. Food Packag Shelf Life 19:210–217. https://doi.org/10.1016/j.fpsl.2018.11.002

    Article  Google Scholar 

  49. Kowalczyk D, Kordowska-Wiater M, Zięba E, Baraniak B (2017) Effect of carboxymethylcellulose/candelilla wax coating containing potassium sorbate on microbiological and physicochemical attributes of pears. Sci Hortic (amsterdam) 218:326–333. https://doi.org/10.1016/j.scienta.2017.02.040

    CAS  Article  Google Scholar 

  50. Kumar P, Tanwar R, Gupta V et al (2021a) Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packaging: Preparation, characterization and antioxidant activity. Int J Biol Macromol 187:223–231. https://doi.org/10.1016/J.IJBIOMAC.2021.07.136

    CAS  Article  Google Scholar 

  51. Kumar A, Gupta V, Gaikwad KK (2021b) Microfibrillated cellulose from pine cone: extraction, properties, and characterization. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01794-2

    Article  Google Scholar 

  52. Kumar A, Gupta V, Singh S, Saini S, Gaikwad KK (2021c) Pine needles lignocellulosic ethylene scavenging paper impregnated with nanozeolite for active packaging applications. Ind Crops Prod 170:113752. https://doi.org/10.1016/j.indcrop.2021.113752

    CAS  Article  Google Scholar 

  53. Kumar J, Akhila K, Gaikwad KK (2021d) Recent developments in intelligent packaging systems for food processing industry: a review. J Food ProcTechnol 12:895

    Google Scholar 

  54. Kurt AS (2021) Cekmecelioglu D (2021) Bacterial cellulase production using grape pomace hydrolysate by shake-flask submerged fermentation. Biomass Convers Biorefinery 1:1–8. https://doi.org/10.1007/S13399-021-01595-7

    Article  Google Scholar 

  55. Lara G, Yakoubi S, Villacorta CM et al (2020) Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res Int 137:109723. https://doi.org/10.1016/j.foodres.2020.109723

    CAS  Article  Google Scholar 

  56. Leandro O, da Ramos S, Nuno R et al (2017) Edible packaging for dairy products. Edible Food Packag. https://doi.org/10.1201/B19468-13

    Article  Google Scholar 

  57. Li J, Li Q, Lei X et al (2018) Effects of wax coating on the moisture loss of cucumbers at different storage temperatures. J Food Qual. https://doi.org/10.1155/2018/9351821

    Article  Google Scholar 

  58. Lipin AA, Lipin AG (2021) Prediction of coating uniformity in batch fluidized-bed coating process. Particuology. https://doi.org/10.1016/J.PARTIC.2021.03.010

    Article  Google Scholar 

  59. Liu T, Liu L (2020) Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. Int J Biol Macromol 162:1509–1515. https://doi.org/10.1016/j.ijbiomac.2020.07.207

    CAS  Article  Google Scholar 

  60. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4:118. https://doi.org/10.4103/0973-7847.70902

    CAS  Article  Google Scholar 

  61. Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules. https://doi.org/10.3390/MOLECULES24224132

    Article  Google Scholar 

  62. Massoud R, Khodaeii D, Hamidi-Esfahani Z, Khosravi-Darani K (2021) The effect of edible probiotic coating on quality of fresh fruits and vegetables: fresh strawberries as a case study. Biomass Convers Biorefinery 2021:1–10. https://doi.org/10.1007/S13399-021-01332-0

    Article  Google Scholar 

  63. Mendy TK, Misran A, Mahmud TMM, Ismail SI (2019) Application of aloe vera coating delays ripening and extend the shelf life of papaya fruit. Sci Hortic (amsterdam) 246:769–776. https://doi.org/10.1016/j.scienta.2018.11.054

    CAS  Article  Google Scholar 

  64. Meys R, Frick F, Westhues S et al (2020) Towards a circular economy for plastic packaging wastes–the environmental potential of chemical recycling. Resour Conserv Recycl 162:105010. https://doi.org/10.1016/j.resconrec.2020.105010

    Article  Google Scholar 

  65. Mohamed SAA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid -based natural edible films in food packaging: a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    CAS  Article  Google Scholar 

  66. Motamedi E, Nasiri J, Malidarreh TR et al (2018) Performance of carnauba wax-nanoclay emulsion coatings on postharvest quality of ‘Valencia’ orange fruit. Sci Hortic (amsterdam) 240:170–178. https://doi.org/10.1016/J.SCIENTA.2018.06.002

    CAS  Article  Google Scholar 

  67. Murmu SB, Mishra HN (2017) Optimization of the arabic gum based edible coating formulations with sodium caseinate and tulsi extract for guava. LWT 80:271–279. https://doi.org/10.1016/J.LWT.2017.02.018

    CAS  Article  Google Scholar 

  68. Nasrin TAA, Rahman MA, Arfin MS et al (2020) Effect of novel coconut oil and beeswax edible coating on postharvest quality of lemon at ambient storage. J Agric Food Res 2:100019. https://doi.org/10.1016/j.jafr.2019.100019

    Article  Google Scholar 

  69. Nicolau-Lapeña I, Colàs-Medà P, Alegre I et al (2021) Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2020.106007

    Article  Google Scholar 

  70. Noori S, Zeynali F, Almasi H (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–320. https://doi.org/10.1016/j.foodcont.2017.08.015

    CAS  Article  Google Scholar 

  71. Olivas GII, Barbosa-Cánovas G (2009) Edible films and coatings for fruits and vegetables. Edible Film Coatings Food Appl. https://doi.org/10.1007/978-0-387-92824-1_7

    Article  Google Scholar 

  72. Oloye MT, Jabar JM, Adetuyi AO, Lajide L (2021) Extraction and characterization of pectin from fruit peels of Irvingia gabonensis and pulp of Cola milleni and Theobroma cacao as precursor for industrial applications. Biomass Convers Biorefinery 2021:1–9. https://doi.org/10.1007/S13399-021-01366-4

    Article  Google Scholar 

  73. Oussalah M, Caillet S, Salmiéri S et al (2006) Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot 69:2364–2369. https://doi.org/10.4315/0362-028X-69.10.2364

    CAS  Article  Google Scholar 

  74. Parreidt TS, Lindner M, Rothkopf I et al (2019) The development of a uniform alginate-based coating for cantaloupe and strawberries and the characterization of water barrier properties. Foods. https://doi.org/10.3390/FOODS8060203

  75. Passafiume R, Gaglio R, Sortino G, Farina V (2020) Effect of three different aloe vera gel-based edible coatings on the quality of fresh-cut “Hayward” kiwifruits. Foods 9:939. https://doi.org/10.3390/foods9070939

    CAS  Article  Google Scholar 

  76. Pérez T AF, Aristizábal T ID, Restrepo F JI (2016) Conservación de mango tommy atkins mínimamente procesado mediante la aplicación de un recubrimiento de aloe vera (Aloe barbandensis miller). Rev Vitae 23: 65-77. https://doi.org/10.17533/udea.vitae.v23n1a07

  77. Phothisuwan S, Koomhin P, Matan N, Matan N (2021) Quality maintenance of salacca fruit with a carnauba wax coating containing orange oil and detection of sensory perception improvement with electroencephalography to appraise brain responses. LWT 147:111628. https://doi.org/10.1016/j.lwt.2021.111628

    CAS  Article  Google Scholar 

  78. Pluta-Kubica A, Jamróz E, Kawecka A et al (2020) Active edible furcellaran/whey protein films with yerba mate and white tea extracts: preparation, characterization and its application to fresh soft rennet-curd cheese. Int J Biol Macromol 155:1307–1316. https://doi.org/10.1016/j.ijbiomac.2019.11.102

    CAS  Article  Google Scholar 

  79. Puscaselu R, Gutt G, Amariei S (2020) The use of edible films based on sodium alginate in meat product packaging: an eco-friendly alternative to conventional plastic materials. Coatings. https://doi.org/10.3390/coatings10020166

    Article  Google Scholar 

  80. Raju A, Sasikala S (2016) Natural antimicrobial edible film for preservation of paneer. Biosci Biotechnol Res Asia. https://doi.org/10.13005/BBRA/2136

  81. Ramakanth D, Singh S, Maji PK, Lee YS, Gaikwad KK (2021) Advanced packaging for distribution and storage of COVID-19 vaccines: a review. Environ Chem Lett 19:3597–3608. https://doi.org/10.1007/s10311-021-01256-1

    CAS  Article  Google Scholar 

  82. Ramos ÓL, Pereira JO, Silva SI et al (2012) Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J Dairy Sci 95:6282–6292. https://doi.org/10.3168/jds.2012-5478

    CAS  Article  Google Scholar 

  83. Ribeiro AM, Estevinho BN (2020) Rocha F (2020) Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioprocess Technol 142(14):209–231. https://doi.org/10.1007/S11947-020-02528-4

    Article  Google Scholar 

  84. Saklani PS, nath S, Kishor Das S, Singh SM (2019) A review of edible packaging for foods. Int J Curr Microbiol Appl Sci. https://doi.org/10.20546/ijcmas.2019.807.359

  85. Salama HE, Abdel Aziz MS (2021) Development of active edible coating of alginate and aloe vera enriched with frankincense oil for retarding the senescence of green capsicums. LWT 145:111341. https://doi.org/10.1016/j.lwt.2021.111341

    CAS  Article  Google Scholar 

  86. Salinas-Roca B, Soliva-Fortuny R, Welti-Chanes J, Martín-Belloso O (2016) Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control 66:190–197. https://doi.org/10.1016/j.foodcont.2016.02.005

    CAS  Article  Google Scholar 

  87. Sapper M, Chiralt A (2018) Starch-based coatings for preservation of fruits and vegetables. Coatings. https://doi.org/10.3390/coatings8050152

    Article  Google Scholar 

  88. Sari YW, Putri SY, Intan N et al (2021) The effect of sorbitol and sweet sorghum to carrageenan ratio on the physicochemical properties of sweet sorghum/carrageenan bioplastics. Biomass Convers Biorefinery 2021:1–10. https://doi.org/10.1007/S13399-020-01254-3

    Article  Google Scholar 

  89. Seydim AC, Sarikus-Tutal G, Sogut E (2020) Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag Shelf Life 26:100567. https://doi.org/10.1016/j.fpsl.2020.100567

    Article  Google Scholar 

  90. Shapi RA, Othman SH, Nordin N et al (2020) Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohydr Polym 230:115602. https://doi.org/10.1016/j.carbpol.2019.115602

    CAS  Article  Google Scholar 

  91. Singh G, Singh S, Kumar B, Gaikwad KK (2021a) Active barrier chitosan films containing gallic acid based oxygen scavenger. J Food Meas Charact 15:585–593. https://doi.org/10.1007/s11694-020-00669-w

    Article  Google Scholar 

  92. Singh AK, Ramakanth D, Kumar A, Lee YS, Gaikwad KK (2021b) Active packaging technologies for clean label food products: a review. J Food Meas Charact 15:4314–4324. https://doi.org/10.1007/s11694-021-01024-3

    Article  Google Scholar 

  93. Singh S, Gaikwad KK, Lee YS (2018) Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int J Biol Macromol 107:1879–1887. https://doi.org/10.1016/j.ijbiomac.2017.10.057

    CAS  Article  Google Scholar 

  94. Singh S, Maji PK, Lee YS, Gaikwad KK (2021c) Applications of gaseous chlorine dioxide for antimicrobial food packaging: a review. Environ Chem Lett 19:253–270. https://doi.org/10.1007/s10311-020-01085-8

    CAS  Article  Google Scholar 

  95. Soares NM, Fernandes TA, Vicente AA (2016) Effect of variables on the thickness of an edible coating applied on frozen fish - Establishment of the concept of safe dipping time. J Food Eng 171:111–118. https://doi.org/10.1016/j.jfoodeng.2015.10.016

    CAS  Article  Google Scholar 

  96. Sousa FF, Pinsetta Junior JS, Oliveira KTEF et al (2021) Conservation of ‘Palmer’ mango with an edible coating of hydroxypropyl methylcellulose and beeswax. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128925

    Article  Google Scholar 

  97. Suhag R, Kumar N, Petkoska AT, Upadhyay A (2020) Film formation and deposition methods of edible coating on food products: A review. Food Res Int 136:109582. https://doi.org/10.1016/j.foodres.2020.109582

    CAS  Article  Google Scholar 

  98. Sundqvist-Andberg H, Åkerman M (2021) Sustainability governance and contested plastic food packaging – An integrative review. J Clean Prod 306:127111. https://doi.org/10.1016/j.jclepro.2021.127111

    Article  Google Scholar 

  99. Talón E, Trifkovic KT, Nedovic VA et al (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161. https://doi.org/10.1016/J.CARBPOL.2016.10.080

    Article  Google Scholar 

  100. Tanwar R, Gupta V, Kumar P, Kumar A, Singh S, Gaikwad KK (2021) Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. Int J Biol Macromol 185:451–461. https://doi.org/10.1016/j.ijbiomac.2021.06.179

    CAS  Article  Google Scholar 

  101. Thakur R, Pristijono P, Bowyer M et al (2019) A starch edible surface coating delays banana fruit ripening. LWT 100:341–347. https://doi.org/10.1016/J.LWT.2018.10.055

    CAS  Article  Google Scholar 

  102. Trajkovska Petkoska A, Daniloski D, D’Cunha NM et al (2021) Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 140:109981. https://doi.org/10.1016/j.foodres.2020.109981

    CAS  Article  Google Scholar 

  103. Ustunol Z (2009) Edible Films and Coatings for Meat and Poultry. Edible Film Coatings Food Appl. https://doi.org/10.1007/978-0-387-92824-1_8

    Article  Google Scholar 

  104. Vieira JM, Flores-López ML, de Rodríguez DJ et al (2016) Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol Technol 116:88–97. https://doi.org/10.1016/j.postharvbio.2016.01.011

    CAS  Article  Google Scholar 

  105. Xia C, Wang W, Wang L et al (2019) Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packag Shelf Life 19:76–85. https://doi.org/10.1016/j.fpsl.2018.12.004

    CAS  Article  Google Scholar 

  106. Xiao Y, Liu Y, Kang S et al (2021) Development of pH-responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp freshness. Food Hydrocoll 120:106893. https://doi.org/10.1016/j.foodhyd.2021.106893

    CAS  Article  Google Scholar 

  107. Xiong Y, Li S, Warner RD, Fang Z (2020) Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 114:107226. https://doi.org/10.1016/j.foodcont.2020.107226

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Author Lokesh Kumar would like to thank the Ministry of Education (MoE), Government of India, for providing financial support to carry out this research work during his master's (M. Tech.) program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirtiraj K. Gaikwad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Ramakanth, D., Akhila, K. et al. Edible films and coatings for food packaging applications: a review. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-021-01339-z

Download citation

Keywords

  • Edible coating
  • Edible films
  • Food packaging
  • Preservation
  • Biopolymer
  • Shelf life