Skip to main content

Biosorption the recovery and analysis of rare earth elements and platinum group metals from real samples. A review

Abstract

The increasing demand of rare earth elements and platinum group metals requires alternative approaches for their recycling from waste. Decades of fundamental laboratory research on biosorption area have emphasised that bio-based materials (biosorbents) display high and versatile potential of metal preconcentration. However, the transposition of this potential into successful practical strategies for the recovery, reuse and analysis of rare earth elements and platinum metals from real samples is still a very little addressed issue with many barriers waiting to be overcome. This review is divided into two parts. First, the biosorption of these metals from mono-component synthetic solutions is debated on the basis of biosorbents’ performances in continuous fixed bed systems. Emphasis is made on the biomass influence on the competitive biosorption of metals from multi-component laboratory solutions. The analytical properties of the biosorbents for metals quantification from simulated solutions are also commented. Second, the recycling strategies point out the possibility of zero loss of value of some secondary sources of rare earth elements and platinum group metals using biosorbents. Then we present improved procedures for trace of rare earth elements and platinum group metals determination from spiked real samples.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A Rev Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    CAS  Article  Google Scholar 

  2. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026. https://doi.org/10.1016/j.procbio.2004.04.008

    CAS  Article  Google Scholar 

  3. Aksu Z, Dönmez G (2006) Binary biosorption of cadmium(II) and nickel(II) onto dreid Chlorella vulgaris: co-ion effect on monocomponent isotherm parameters. Process Biochem 41:860–868. https://doi.org/10.1016/j.procbio.2005.10.025

    CAS  Article  Google Scholar 

  4. Alalwan HA, Kadham MA, Alminshid AH (2020) Removal of heavy metals from wastewaters using agricultural byproducts. J Water Supply Res T 69:97–112. https://doi.org/10.2166/aqua.2020.133

    Article  Google Scholar 

  5. Ambaye TG, Vaccari M, Castro FD, Prasad S, Rtimi S (2020) Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges and perspectives. Environ Sci Pollut Res 27:36052–36074. https://doi.org/10.1007/s11356-020-09630-2

    CAS  Article  Google Scholar 

  6. Anastopoulos I, Bhatnagar A, Lima EC (2016) Adsorption of rare earth metals–a review of recent literature. J Mol Liq 221:954–962. https://doi.org/10.1016/j.molliq.2016.06.076

    CAS  Article  Google Scholar 

  7. Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86. https://doi.org/10.1016/j.molliq.2015.05.023

    CAS  Article  Google Scholar 

  8. Anastopoulos I, Pashalidis I, Dimitrios BA-H, Giannakoudakis DA, Robalds A, M Usman M, Escudero LB, Zhou Y, Colmenares JC, Núñez-Delgado A, Lima EC (2019) Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J Mol Liq 295:111684. https://doi.org/10.1016/j.molliq.2019.111684

    CAS  Article  Google Scholar 

  9. Andres Y, Texier AC, Le Cloirec P (2003) Rare earth elements removal by microbial biosorption-a review. Environ Technol 24:1367–1375. https://doi.org/10.1080/09593330300309385681

    CAS  Article  Google Scholar 

  10. Arunraj B, Sathvika T, Rajesh V, Rajesh N (2019) Cellulose and saccharomyces cerevisiae embark to recover europium from phosphor powder. ACS Omega 4:940–952. https://doi.org/10.1021/acsomega.8b02845

    CAS  Article  Google Scholar 

  11. Aryal M (2020) A comprehensive study on the biosorption of heavy metals:materials, performances, mechanisms and mathematical modellings. Rev Chem Eng 37:715–754. https://doi.org/10.1515/revce-2019-0016

    Article  Google Scholar 

  12. Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal–contaminated industrial effluents. Water SA 24:129–135

    CAS  Google Scholar 

  13. Balaram V (2019) Rare earth-elements: a review of applications, occurrence, exploration, analysis, recycling and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    CAS  Article  Google Scholar 

  14. Barros Ó, Costa L, Costa F, Lago A, Rocha V, Vipotnik Z, Silva B, Tavares T (2019) Recovery of rare earth elements from wastewater towards a circular economy. Molecules 24:1005. https://doi.org/10.3390/molecules24061005

    CAS  Article  Google Scholar 

  15. Beni AA, Esmaeili A (2020) Biosorption, an efficient method for removing heavy metals from industrial effluents: a review. Environ Technol Innov 17:100503. https://doi.org/10.1016/j.eti.2019.100503

    Article  Google Scholar 

  16. Benis KZ, Damuchali AM, McPhedran KN, Soltan J (2020) Treatment of aqueous arsenic: a review of biosorbent preparation methods. J Env Manage 273:111126. https://doi.org/10.1016/j.jenvman.2020.111126

    CAS  Article  Google Scholar 

  17. Binnermans K, Jones PT, Gerven TV, Blanpain B, Pontikes Y (2015) Towards zero–waste valorization of rare-earth containing industrial process residues: a critical review. J Clean Prod 99:17–38. https://doi.org/10.1016/j.jclepro.2015.02.089

    CAS  Article  Google Scholar 

  18. Birungi ZS, Chirwa EMN (2018) Bioremediation of toxic metals and recovery of target metals from actual wastewaters using algal biosorbents. Chem Eng Trans 64:535–540. https://doi.org/10.3303/CET1864090

    Article  Google Scholar 

  19. Birungi ZS, Chirwa EM, Botai OJ (2017) Competitive adsorption in a ternary system of toxic metals and rare earth elements using Desmodesmus multivariabilis: empirical and kinetic modelling. J Appl Phsycol 29:2899–2910. https://doi.org/10.1007/s10811-017-1197-0

    CAS  Article  Google Scholar 

  20. Brewer A, ShutthanandanV D, Kovarik L, Chang E, Sawvel A, Mason H, Reed D, Ye C, Hynes W, Lammers L, Park D, Jiao Y (2019) Microbe encapsulation for selective rare-earth recovery from electronic waste leachates. Environ Sci Technol 53:13888–13897. https://doi.org/10.1021/acs.est.9b04608

    CAS  Article  Google Scholar 

  21. Buda AR, Church C, Kleinman PJ, Saporito LS, Moyer BG, Tao L (2010) Using rare earth elements to control phosphorus and track manure in runoff. J Environ Qual 39:1028–1035. https://doi.org/10.2134/jeq2009.0359

    CAS  Article  Google Scholar 

  22. Bulska E, Ruszczynska A (2017) Analytical techniques for trace element determination. Phys Sci Rev 2:20178002. https://doi.org/10.1515/psr-2017-8002

    Article  Google Scholar 

  23. Chassary P, Vincent T, Marcano JS, Macaskie LE, Guibal E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147. https://doi.org/10.1016/j.hydromet.2004.10.004

    CAS  Article  Google Scholar 

  24. Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges&Opportunities-a review. J Environ Chem Eng 6:1288–1304. https://doi.org/10.1016/j.jece.2018.01.032

    CAS  Article  Google Scholar 

  25. Choudhary B, Paul D, Borse AU, Garole DJ (2017) Recovery of palladium from secondary waste using soluble tannins cross-linked Lagerstroemia speciosa leaves powder. J Chem Technol Biotechnol 92:1667–1677. https://doi.org/10.1002/jctb.5163

    CAS  Article  Google Scholar 

  26. Colica G, Caparrota S, De Philips R (2012) Selective biosorption and recovery of ruthenium from industrial effluents with Rhodopseudomonas palustris strains. Appl Microbiol Biotechnol 95:381–387. https://doi.org/10.1007/s00253-012-4053-9

    CAS  Article  Google Scholar 

  27. Crini G, Lichtfouse E, Wilson LD, Mori-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    CAS  Article  Google Scholar 

  28. Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256. https://doi.org/10.1016/j.jhazmat.2008.02.001

    CAS  Article  Google Scholar 

  29. Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earth 31:933–943. https://doi.org/10.1016/S1002-0721(13)60009-5

    CAS  Article  Google Scholar 

  30. Das N (2010) Recovery of precious metals through biosorption–a review. Hydrometallurgy 103:180–189. https://doi.org/10.1016/j.hydromet.2010.03.016

    CAS  Article  Google Scholar 

  31. Das D, Varshini S, Das N (2014) Recovery of lanthanum(III) from aqueous solutions using biosorbents of plant and animal origin:batch and column studies. Miner Eng 69:40–56

    CAS  Article  Google Scholar 

  32. da Costa TB, da Silva MGC, Vieira MGA (2020) Recovery of rare earth metals from aqueous solutions by bio/adsorption using non-conventional materials: a review with recent studies and promising approaches in colum applications. J Rare Earth 38:339–355. https://doi.org/10.1016/j.jre.2019.06.001

    CAS  Article  Google Scholar 

  33. de Carvalho GG, Kondaveeti S, Petri DF, Fioroto AM, Albuquerque LG, Oliveira PV (2016) Evaluation of calcium alginate beads for Ce, La and Nd preconcentration from groundwater prior to ICP OES analysis. Talanta 161:707–712. https://doi.org/10.1016/j.talanta.2016.09.027

    CAS  Article  Google Scholar 

  34. de Carvalho GG, Petri DF, Oliveira PV (2018) Calcium alginate microparticles for rare earth elements preconcentration prior to ICP-MS measurements in fresh water. Anal Methods 10:4242–4250. https://doi.org/10.1039/C8AY01626G

    Article  Google Scholar 

  35. de Freitas GR, da Silva MGR, Vieira MGA (2019) Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environ Sci Polut Res 26:19097–19118. https://doi.org/10.1007/s11356-019-05330-8

    Article  Google Scholar 

  36. Dhankhar R, Hooda A (2011) Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491. https://doi.org/10.1080/09593330.2011.57922

    CAS  Article  Google Scholar 

  37. Ding Y, Zhang S, Liu B, Zheng H, Chang C, Ekberg C (2019) Recovery of precious metals from electronic waste and catalysts: a review. Resour Conser Recycl 141:284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

    Article  Google Scholar 

  38. Diniz V, Weber ME, Volensy B, Naja N (2008) Column biosorption of lanthanum and europium by Sargassum. Water Res 42:363–371. https://doi.org/10.1016/j.watres.2007.07.027

    CAS  Article  Google Scholar 

  39. Diniz V, Volensky B (2005) Biosorption of La, Eu and Yb using Sargassum biomass. Water Res 39:239–247. https://doi.org/10.1016/j.watres.2004.09.009

    CAS  Article  Google Scholar 

  40. do Nascimento CF, Luna AS, da Costa ACA (2017) Kinetics and equilibrium of lanthanum biosorption by free and immobilized microalgal cells. Adsorp Sci Technol 35:137–152. https://doi.org/10.1177/0263617416672667

    CAS  Article  Google Scholar 

  41. Dodson JR, Parker HL, Garcia AM, Hicken A, Asenave K, Farmer TJ, He H, Clark JH, Hunt AJ (2015) Bio-derived materials as green routes for precious&critical metal recovery and re-use. Green Chem 17:1951–1965. https://doi.org/10.1039/C4GC02483D

    CAS  Article  Google Scholar 

  42. Dong H, Zhao J, Wu Y, Li B (2015) Recovery of platinum group metals from spent catalysts: a review. Int J Miner Process 145:108–113. https://doi.org/10.1016/j.minpro.2015.06.009

    CAS  Article  Google Scholar 

  43. Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8:103988. https://doi.org/10.1016/j.jece.2020.103988

    CAS  Article  Google Scholar 

  44. Dziwulska U, Bajguz A, Godlewska-Żyłkiewicz B (2004) The use of algae chlorella vulgaris immobilized on cellex-T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal Lett 37:2189–2203. https://doi.org/10.1081/AL-200026696

    CAS  Article  Google Scholar 

  45. El-Sayed HE, El-Sayed MM (2014) Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: a review. Biomed Res Int 2014:146769. https://doi.org/10.1155/2014/146769

    CAS  Article  Google Scholar 

  46. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427. https://doi.org/10.1007/s10311-018-0816-6

    CAS  Article  Google Scholar 

  47. Escudero LB, Maniero M, Agostini E, Smichowski PN (2016) Biological substrates: green alternatives in trace elemental preconcentration and speciation analysis. TrAC Trends Anal Chem 80:531–546. https://doi.org/10.1016/j.trac.2016.04.002

    CAS  Article  Google Scholar 

  48. El-Sayed HEM, El- Sayed MMH (2014) Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: a review. BioMed Res Int 2014:146769. https://doi.org/10.1155/2014/146769

    CAS  Article  Google Scholar 

  49. Feng X, Zhang TA, Dreisinger D, Boyle F (2014) A critical review on solvent extraction of rare earth from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    CAS  Article  Google Scholar 

  50. Fisher A, Kara D (2016) Determination of rare earth elements in natural water samples- a review of sample preparation, preconcentration and direct methodologies. Anal Chim Acta 935:1–29. https://doi.org/10.1016/j.aca.2016.05.052

    CAS  Article  Google Scholar 

  51. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and applications. Bioresor Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    CAS  Article  Google Scholar 

  52. Garole DJ, Choudhary BC, Paul D, Borse AU (2018) Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ Pollut Sci 25:10911–10925. https://doi.org/10.1007/s11356-018-1351-5

    CAS  Article  Google Scholar 

  53. Geise EC (2020) Biosorption as green technology for the recovery and separation of rare earth elements. World J Microbiol Biotechnol 36:52. https://doi.org/10.1007/s11274-020-02821-6

    CAS  Article  Google Scholar 

  54. Ghomi A, Asasian-Kolur N, Sharifian S, Golnaraghi A (2020) Biosorption for sustainable recovery of precious metals from wastewater. J Environ Chem Eng 8:103996. https://doi.org/10.1016/j.jece.2020.103996

    CAS  Article  Google Scholar 

  55. Godlewska- Zylkiewicz B (2006) Microorganisms in inorganic chemical analysis. Anal Bioanal Chem 384:114–123. https://doi.org/10.1007/s00216-005-0142-2

    CAS  Article  Google Scholar 

  56. Godlewska-Zylkiewicz B (2004) Preconcentration and separation preocedures for spectrochemical determination of platinum and palladium. Microchim Acta 147:189–210. https://doi.org/10.1007/s00604-004-0234-2

    CAS  Article  Google Scholar 

  57. Godlewska- Zylkiewicz B, Sawicha S, Karpinska J (2019) Removal of palladium and platinum from wastewater by means of biosorption on fungi Aspergillus sp. and Saccharomyces cerevisiae. Water 11:1522. https://doi.org/10.3390/w1107

    CAS  Article  Google Scholar 

  58. Godlewska-Żyłkiewicz B, Malejko J (2015) Appraisal of biosorption for recovery, separation and determination of platinum, palladium and rhodium in environmental samples. In: Zereini F, Wiseman C (eds) Platinum Metals in the Environment. Environmental Science and Engineering. Springer, Berlin, Heidelberg

    Google Scholar 

  59. Godlewska-Żyłkiewicz B, Kozłowska M (2005) Solid phase extraction using immobilized yeast Saccharomyces cerevisiae for determination of palladium in road dust. Anal Chim Acta 539:61–67. https://doi.org/10.1016/j.aca.2005.02.051

    CAS  Article  Google Scholar 

  60. Godlewska-Żyłkiewicz B, Malejko J, Leśniewska B, Kojło A (2008) Assessment of immobilized yeast for the separation and determination of platinum in environmental samples by flow-injection chemiluminescence and electrothermal atomic absorption spectrometry. Microchim Acta 163:327–334. https://doi.org/10.1007/s00604-008-0022-5

    CAS  Article  Google Scholar 

  61. Godlewska-Żyłkiewicz B, Malejko J, Hałaburda P, Leśniewska B, Kojło A (2007) Separation of matrix by means of biosorption for flow-injection chemiluminescent determination of trace amounts of Pt(IV) in natural waters. Microchem J 85:314–320. https://doi.org/10.1016/j.microchem.2006.07.008

    Article  Google Scholar 

  62. Grad O, Ciopec M, Negrea A, Duteanu N, Vlase G, Negrea P, Dumitrescu C, Vlase T, Voda R (2021) Precious metals recovery from aqueous solutions using a new adsorbent material. Sci Rep 11:2016. https://doi.org/10.1038/s41598-021-81680-z

    CAS  Article  Google Scholar 

  63. Gupta NK, Gupta P, Ramteke P, Sahoo H, Sengupta A (2019) Biosorption–a green method for the preconcentration of rare earth elements(REEs) from waste solutions- a review. J Mol Liq 274:148–164. https://doi.org/10.1016/j.molliq.2018.10.134

    CAS  Article  Google Scholar 

  64. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals:current status and their future prospects. Environ Eng Res 20:1–18. https://doi.org/10.4491/eer.2015.018

    Article  Google Scholar 

  65. Gurung M, Adhikari BB, Alam S, Kawawita H, Ohto K, Inoue K (2013) Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chem Eng J 228:405–414. https://doi.org/10.1016/j.cej.2013.05.011

    CAS  Article  Google Scholar 

  66. Hagelüken C (2012) Recycling the platinum group metals: a european perspective. Platin Met Rev 56:29–35. https://doi.org/10.1595/147106712X611733

    Article  Google Scholar 

  67. He J, Chen PJ (2014) A comprehensive review on biosorption of heavy metals by algal biomass:materials, performances, chemistry and modeling simulation tools. Bioresour Technol 160:67–78. https://doi.org/10.1016/j.biortech.2014.01.068

    CAS  Article  Google Scholar 

  68. He C, Salih K, Wei Y, Mira M, Abdel-Rahman A, Elwakeel K, Hamza M, Guibal E (2021) Efficient recovery of rare earth elements (Pr(III) and Tm(III) from mining residues using a new phosphorylated hydrogel (algal biomass/PEI). Metals 11:294. https://doi.org/10.3390/met11020294

    CAS  Article  Google Scholar 

  69. Hidayah NN, Abidin SZ (2017) The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction over liquid-liquid extraction: a review. Miner Eng 112:103–113. https://doi.org/10.1016/j.mineng.2017.07.014

    CAS  Article  Google Scholar 

  70. Hu B, He M, Chen B, Jiang Z (2016) Separation/preconcentration techniques for rare earth elements analysis. Phys Sci Rev 1:10. https://doi.org/10.1515/psr-2016-0056

    Article  Google Scholar 

  71. Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Silanpää M (2018) Understanding the factors affecting the adsorption of lanthanum using different adsorbents: a critical review. Chemosphere 204:413–440. https://doi.org/10.1016/j.chemosphere.2018.04.053

    CAS  Article  Google Scholar 

  72. Ilyas S, Kim M-S, Lee J-L, Jabeen A, Bhatti HN (2017) Bio–reclamation of strategic and energy critical metals from secondary resources. Metals 7:207. https://doi.org/10.3390/met7060207

    CAS  Article  Google Scholar 

  73. Işıldar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker A, Kuchta K (2019) Biotechnological strategies for recovery of valuble and critical raw materials from waste electical and electronic equipment– A review. J Hazard Mater 362:467–481. https://doi.org/10.1016/j.jhazmat.2018.08.050

    CAS  Article  Google Scholar 

  74. Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69:1775–1787. https://doi.org/10.2166/wst.2013.718

    CAS  Article  Google Scholar 

  75. Jha MK, Lee J, Kim M, Jeong J, Kim B-S, Kumar V (2013) Hydrometallurgical recovery/ recycling of platinum by leaching spent catalysts: a review. Hydrometallurgy 133:23–32. https://doi.org/10.1016/j.hydromet.2012.11.012

    CAS  Article  Google Scholar 

  76. Jibrin SS, Huang C, Li J, Zhang N, Hu B (2009) Preconcentration/separation of gold and palladium by a microcolumn packed with Azadirachta Indica leaf powder and their determination in geological samples by ICP-OES. Geostand Geoanal Res 33:469–476. https://doi.org/10.1111/j.1751-908X.2009.00006.x

    CAS  Article  Google Scholar 

  77. Ju X, Igarashi K, Miyashita S, Mitsuhashi H, Inagaki K, Fujii S, Sawada H, Kuwabara T, Minoda A (2016) Effective and selective recovery of gold and palladium from metal wastewater using a sulfothemophilic red alga, Galdieria sulphuraria. Biores Technol 211:759–764. https://doi.org/10.1016/j.biortech.2016.01.061

    CAS  Article  Google Scholar 

  78. Jyothi RK, Thenepalli T, Ahn JW, Parhi PK, Chung KW, Lee JY (2020) Review of rare earth elements recovery from secondary resources for clean energy technologies: grand opportunities to create wealth from waste. J Clean Prod 267:122048. https://doi.org/10.1016/j.jclepro.2020.122048

    CAS  Article  Google Scholar 

  79. Kafshgari F, Keshtkar AR, Mousavian MA (2013) Study of Mo(VI) removal from aqueous solution: applicationof different mathematical models to continuous biosorption data. Iran J Environ Health Sci Eng 10:14. https://doi.org/10.1186/1735-2746-10-14

    CAS  Article  Google Scholar 

  80. Karadas C, Kara D, Fisher A (2011) Determination of rare earth elements in seawater by inductively coupled mass spectrometry coupled with off-line preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4. Anal Chim Acta 689:184–189. https://doi.org/10.1016/j.aca.2011.01.049

    CAS  Article  Google Scholar 

  81. Kim S, Choi Y-E, Yun Y-S (2016) Ruthenium recovery from acetic acid industrial effluent using chemically stable and high–performance polyethyleneimine-coated polysulfone- Escherichia coli biomass composite fibers. J Hazard Mater 313:29–36. https://doi.org/10.1016/j.jhazmat.2016.03.075

    CAS  Article  Google Scholar 

  82. Kim S, Song M-H, Wei W, Yun Y-S (2015) Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)–Pd(II) binary solution. J Hazard Mater 283:657–662. https://doi.org/10.1016/j.jhazmat.2014.10.008

    CAS  Article  Google Scholar 

  83. Kucuker MA, Wieczorek N, Kuchta K, Copty NK (2017) Biosorption of neodymium on Chlorella vulgaris in aqueous solutions obtained from hard disk drive magnets. PLoS ONE 12:20175255. https://doi.org/10.1371/journal.pone.0175255

    CAS  Article  Google Scholar 

  84. Kwak IS, Won SW, Chung YE, Yun Y-S (2013) Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour Technol 128:30–35. https://doi.org/10.1016/j.biortech.2012.10.146

    CAS  Article  Google Scholar 

  85. Kyzas GZ, Lazaridis NK, Kostoglou N (2014) Adsorption/desorption of a dye by chitosan derivative: experiments and phenomenological modeling. Chem Eng J 248:327–336. https://doi.org/10.1016/j.cej.2014.03.063

    CAS  Article  Google Scholar 

  86. Lombana-Fraguela R, Pomares-Alfonso MS, Govin-Sanjudo A, Peña-Icart M, Villanueva-Tagle ME (2020) Study of the Pt (IV) sorption on the Aspergillus niger O-5 biomass for remediation and/ or analytical purposes. Bioremediat J 24:95–111. https://doi.org/10.1080/10889868.2020.1762534

    CAS  Article  Google Scholar 

  87. Li Y, Yang J, Jiang Y (2012) Trace rare earth element detection in food and agricultural products based on walnut shell packed microcolumn preconcentration coupled with inductively coupled plasma mass spectrometry. J Agric Food Chem 60:3033–3041. https://doi.org/10.1021/jf2049646

    CAS  Article  Google Scholar 

  88. Losev VN, Elsufiev EV, Buyko OV, Tromfimchuk AV, GordovLegenchuk RV (2018a) Extraction of precious metals from industrial solutions by pine (Pinus sylvestris) sawdust–based biosorbent modified with thiourea groups. Hydrometallurgy 176:118–128. https://doi.org/10.1016/j.hydromet.2018.01.016

    CAS  Article  Google Scholar 

  89. Losev VI, Buyko OV, Borodina EV, Samoilo AS, Zhyzhaev AM, Velicko B (2018b) Biosorbents based on pine sawdust and malt sprouts for precocentration and ICP-OES determination of nonferrous, heavy and precious metals in enevironmental samples. Sep Sci Technol 53:1654–1665. https://doi.org/10.1080/01496395.2018.1435692

    CAS  Article  Google Scholar 

  90. Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biosorption of precious metals. Biotechnol Adv 25:264–271. https://doi.org/10.1016/j.biotechadv.2007.01.003

    CAS  Article  Google Scholar 

  91. Mack C, Wilhelmi B, Duncan JR, Burgess JE (2011) Biosorptive recovery of platinum from platinum group metal refining wastewaters by immobilized Saccharomyces Cerevisiae. Water Sci Technol 63:149–155. https://doi.org/10.2166/wst.2011.025

    CAS  Article  Google Scholar 

  92. Malejko J, Godlewska-Zyłkiewicz B, Kojło A (2010) A novel flow-injection method for the determination of Pt(IV) in environmental samples based on chemiluminescence reaction of lucigenin and biosorption. Talanta 81:1719–1724. https://doi.org/10.1016/j.talanta.2010.03.029

    CAS  Article  Google Scholar 

  93. Malejko J, Szygałowicz M, Godlewska-Żyłkiewicz B, Kojło A (2012) Sorption of platinum on immobilized microorganisms for its on-line preconcentration and chemiluminescent determination in water samples. Microchim Acta 176:429–435. https://doi.org/10.1007/s00604-011-0737-6

    CAS  Article  Google Scholar 

  94. Mao J, Kim S, Wu XH, Kwak I-S, Zhou T, Yun Y-S (2015) A sustainable cationic chitosan/E. coli fiber biosorbent for Pt(IV) removal and recovery in batch and column systems. Sep Purif Technol 143:32–39. https://doi.org/10.1016/j.seppur.2015.01.023

    CAS  Article  Google Scholar 

  95. Maruyama T, Terashima Y, Takeda S, Okazaki F, Goto M (2014) Selective adsorption and recovery of precious metal ions using protein rich biomass as efficient adsorbents. Process Biochem 49:850–857. https://doi.org/10.1016/j.procbio.2014.02.016

    CAS  Article  Google Scholar 

  96. Michalak I, Chojnacka K, Witek-Krowiak A (2013) A state of the art for the biosorption process - a review. Appl Biochem Biotechol 170:1389–1416. https://doi.org/10.1007/s12010-013-0269-0

    CAS  Article  Google Scholar 

  97. Mouanga M, Andreatta F, Druart ME, Marin E, Fedrizzi L, Olivier MG (2015) A localized approach to study the effect of cerium salts as cathodic inhibitor on iron/aluminum galvanic coupling. Corros Sci 90:491–502. https://doi.org/10.1016/j.corsci.2014.03.026

    CAS  Article  Google Scholar 

  98. Muthu M, Wu HF, Gopal J, Sivanesan I, Chun S (2017) Exploiting microbial polysaccharides for biosorption of trace elements in aqueous environments-scope for expansion via nanomaterial intervention. Polymers 9:721. https://doi.org/10.3390/polym9120721

    CAS  Article  Google Scholar 

  99. Na Y, Lee J, Lee SH, Kumar PK, Kim JK, Patel R (2020) Removal of heavy metals by polysaccharide: a review. Polym-Plast Tech Mat 59:1770–1790. https://doi.org/10.1080/25740881.2020.1768545

    CAS  Article  Google Scholar 

  100. Nieboer E, Richardson DH (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut 1:3–26

    CAS  Article  Google Scholar 

  101. Oke D, Ndlova S, Sibanda V (2017) Purification of a dilute platinum group metals process stream using waste yeast biomass immobilized on plaster of Paris. J South Afr Inst Min Metall 117:757–763. https://doi.org/10.17159/2411-9717/2017/v117n8a5

    CAS  Article  Google Scholar 

  102. Okenikova L, Zemberyova M, Prochazkova S (2016) Biosorbents for solid phase extraction of toxic elements in water. Environ Chem Lett 14:67–77. https://doi.org/10.1007/s10311-015-0539-x

    CAS  Article  Google Scholar 

  103. Oliveira RC, Guibal E, Garcia O Jr (2012) Biosorption and desorption of lanthanum (III) and neodymium (III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals. Biotechnol Progr 28:715–722. https://doi.org/10.1002/btpr.1525

    CAS  Article  Google Scholar 

  104. Oliveira RC, Jouannin C, Guibal E, Oswaldo Garcia Jr O (2011) Samarium(III) and praseodymium(III) biosorption on Sargassum sp.: batch study. Process Biochem 46:736–744. https://doi.org/10.1016/j.procbio.2010.11.021

    CAS  Article  Google Scholar 

  105. Ozdemir S, Okumus V, Dündar A, Kilnic E (2013) Preconcentration of metal ions using microbacteria. Microchim Acta 180:719–739. https://doi.org/10.1007/s00604-013-0991-x

    CAS  Article  Google Scholar 

  106. Özdemir S, Okumuş V, Dündar A, Çelik KS, Yüksel U, Kılınç E (2014) Selective preconcentration of Lanthanum (III) by Coriolus versicolor immobilised on Amberlite XAD-4 and its determination by ICP-OES. Int J Environ Anal Chem 94:533–545. https://doi.org/10.1080/03067319.2013.831412

    CAS  Article  Google Scholar 

  107. Pacheco PH, Gil RA, Cerutti SE, Smichowski P, Martinez RD (2011) Biosorption: a new rise for elemental solid phase extraction methods. Talanta 85:2290–2300. https://doi.org/10.1016/j.talanta.2011.08.043

    CAS  Article  Google Scholar 

  108. Parajuli D, Hirota H (2009) Recovery of palladium using chemically modified cedar wood powder. J Colloid Interface Sci 338:371–375. https://doi.org/10.1016/j.jcis.2009.06.043

    CAS  Article  Google Scholar 

  109. Park D, Yun Y-S, Park JM (2010) The past, present and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102. https://doi.org/10.1007/s12257-009-0199-4

    CAS  Article  Google Scholar 

  110. Patel H (2019) Fixed bed column adsorption study: a comprehensive review. Appl Water Sci 9:45. https://doi.org/10.1007/s13201-019-0927-7

    CAS  Article  Google Scholar 

  111. Patel H (2020) Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci Rep 10:16895. https://doi.org/10.1038/s41598-020-72583-6

    CAS  Article  Google Scholar 

  112. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    CAS  Article  Google Scholar 

  113. Ponou J, Dodbiba G, Anh J-W, Tujita T (2016) Selective recovery of rare earth elements from aqueous solution obtained from coal power plant ash. J Env Chem Eng 4:3761–3767. https://doi.org/10.1016/j.jece.2016.08.019

    CAS  Article  Google Scholar 

  114. Ponou J, Wang LP, Dodbiba G, Okaya K, Fujila T, Mitsuhashi AT, Satoh G, Noda M (2014) Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J Env Chem Eng 2:1070–1081. https://doi.org/10.1016/j.jece.2014.04.002

    CAS  Article  Google Scholar 

  115. Ponnuchamy M, Kapoor A, Senthil Kumar P, Vo D-V, Balakrishnan A, Jacob MM (2021) Sustainable adsorbents for the removal of pesticides from water: a review. Environ Chem Lett 19:2425–2463. https://doi.org/10.1007/s10311-021-01183-1

    CAS  Article  Google Scholar 

  116. Pyrzynska K, Kubiak A, Wysocka I (2016) Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta 154:15–22. https://doi.org/10.1016/j.talanta.2016.03.022

    CAS  Article  Google Scholar 

  117. Ramasamy DL, Porada S, Sillanpää M (2019) Marine algae: A promising resource for the selective recovery of scandium and rare earth elements from aqueous systems. Chem Eng J 371:759–768. https://doi.org/10.1016/j.cej.2019.04.106

    CAS  Article  Google Scholar 

  118. Ramrakhiani L, Halder A, Majumder A, Mandal AK, Majumdar S, Ghosh S (2017) Industrial waste derived biosorbent for toxic metal remediation: mechanism studies and spent biosorbent management. Chem Eng J 308:1048–1064. https://doi.org/10.1016/j.cej.2016.09.145

    CAS  Article  Google Scholar 

  119. Rosales E, Meijide J, Pazos M, Sanroman A (2017) Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous flow systems. Bioresour Technol 246:176–192. https://doi.org/10.1016/j.biortech.2017.06.084

    CAS  Article  Google Scholar 

  120. Ruiz M, Sastre AM, Zikan MC, Guibal E (2001) Palladium sorption on glutaraldehyde-crosslinked chitosan in fixed-bed systems. J Appl Polym Sci 81:153–165. https://doi.org/10.1002/aap.1425

    CAS  Article  Google Scholar 

  121. Shariffard H, Soleimani M, Ashtiani FZ (2014) Evaluation of chitosan flakes as adsorbent for palladium and platinum recovery from binary dilute solutions. Int J Glob Warming 6:303–314

    Article  Google Scholar 

  122. Sazali N, Harun Z, Sazali N (2020) A review on batch and column adsorption of various adsorbent towards the removal of heavy metal. J Adv Res Fluid Mech. Therm Sci 67:66–88

    Google Scholar 

  123. Sethurajan M, Van Hullebusch ED, Fontana D, Akcil A, Deveci H, Batinic B, Leal JP, Gasche TA, Ali Kucuker M, Kuchta K, Neto IF (2019) Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Crit Rev Env Sci Technol 49:212–275. https://doi.org/10.1080/10643389.2018.1540760

    CAS  Article  Google Scholar 

  124. Setshedi KZ, Bhaumik M, Onyango MS, Maity A (2014) Breakthrough studies for Cr(VI) sorption from aqueous solution using exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite. J Ind Eng Chem 20:2208–2216. https://doi.org/10.1016/j.jiec.2013.09.052

    CAS  Article  Google Scholar 

  125. Shakerin N, Zolriasatain F, Panahi HA, Moniri E (2013) Preconcentration of samarium with modified yeast cells for its determination by atomic emission spectroscopy. Toxicol Environ Chem 95:1290–1298. https://doi.org/10.1080/02772248.2013.863891

    CAS  Article  Google Scholar 

  126. Sharma G, Sunder S, Adhikari S, Rohanifar A, Pondell A, Kirchhoff JR (2020) Evolution of environmentally friendly strategies for metal extraction. Separations 7:4. https://doi.org/10.3390/separations7010004

    CAS  Article  Google Scholar 

  127. Singh S, Kumar V, Datta S, Dhanjal DS, Sharma K, Samuel J, Singh J (2020) Current advancement and future prospect of biosorbents for remediation. Sci Total Environ 709:135895. https://doi.org/10.1016/j.scitotenv.2019.135895

    CAS  Article  Google Scholar 

  128. Smichowski P, Londonio A (2020) A retrospective and prospective of the use of bio- and nanomaterials for preconcentration, speciation and determination of trace elements: a review spanning 25 years of research. Anal Bioanal Chem 412:6023–6036. https://doi.org/10.1007/s00216-020-02536-5

    CAS  Article  Google Scholar 

  129. Tan L, Wu H, Cui H, Xu H, Xu M, Liu X, Dong H, Xie J (2020) Selective adsorption of palladium and platinum from secondary wastewater using Escherichia coli BL 21 and Providencia vermicola. Bioprocess Biosyst Eng 43:1885–1897. https://doi.org/10.1007/s00449-020-02378-6

    CAS  Article  Google Scholar 

  130. Tavassolirizi Z, Shams K, Omidkhah MR (2015) Platinum recovery from model media and a Pt-Sn/alumina spent catalyst extract using corn husk based adsorbent. J Ind Eng Chem 23:119–127. https://doi.org/10.1016/j.jiec.2014.08.002

    CAS  Article  Google Scholar 

  131. Texier AC, Andres Y, Le Cloirec P (1999) Selective biosorption of lanthanides (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol 33:489–495

    CAS  Article  Google Scholar 

  132. Teixeira LSG, Lemos VA, Melo Coelho L, Rocha FRP (2016) Applications of biosorbents in atomic spectrometry. Appl Spectrosc Rev 51:36–72. https://doi.org/10.1080/05704928.2015.1101699JS

    CAS  Article  Google Scholar 

  133. Tofan L, Wenkert R (2020) Chelating polymers with valuable sorption potential for development of precious metal recycling technologies. Rev Chem Eng. https://doi.org/10.1515/revce-2019-0075

    Article  Google Scholar 

  134. Torres E (2020) Biosorption: the latest advances. Processes 8:1584. https://doi.org/10.3390/pr8121584

    CAS  Article  Google Scholar 

  135. Upadhyay U, Sreedhan I, Singh SA, Patel CM, Anitha KL (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000. https://doi.org/10.1016/j.carbpol.2020.117000

    CAS  Article  Google Scholar 

  136. Varshini JS, Das D, Das N (2017) Packed bed column studies on recovery of cerium(III) from electronic wastewater using biosorbents of animal and plant origin. Indian J Chem Technol 20:294–303

    Google Scholar 

  137. Velkova Z, Kirova G, Stoytcheva M, Kostandinova S, Todorova K, Gochev V (2018) Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci 18:871–881. https://doi.org/10.1002/elsc.201800017

    CAS  Article  Google Scholar 

  138. Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manage 160:283–296. https://doi.org/10.1016/j.jenvman.2015.06.030

    CAS  Article  Google Scholar 

  139. Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2011) Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination 265:54–59. https://doi.org/10.1016/j.desal.2010.07.030

    CAS  Article  Google Scholar 

  140. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    CAS  Article  Google Scholar 

  141. Volensky B (2001) Detoxification of metal–bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216. https://doi.org/10.1016/S0304-386X(00)00160-2

    Article  Google Scholar 

  142. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    CAS  Article  Google Scholar 

  143. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001

    CAS  Article  Google Scholar 

  144. Woińska S, Godlewska-Żyłkiewicz B (2011) Determination of platinum and palladium in road dust after their separation on immobilized fungus by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 66:522–528. https://doi.org/10.1016/j.sab.2011.03.009

    CAS  Article  Google Scholar 

  145. Won SW, Mao J, Kwak I-S, Sathishkumar M, Yun Y-S (2010) Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour Technol 101:1135–1140. https://doi.org/10.1016/j.biortech.2009.09.056

    CAS  Article  Google Scholar 

  146. Won SW, Kotte P, Wei W, Lim A, Yun YS (2014) Biosorbents for recovery of precious metals. Bioresour Technol 160:203–212. https://doi.org/10.1016/j.biortech.2014.01.121

    CAS  Article  Google Scholar 

  147. Wysocka I (2021) Determination of rare earth elements concentrations in natural waters – a review of ICP-MS measurement approaches. Talanta 221:121636. https://doi.org/10.1016/j.talanta.2020.121636

    CAS  Article  Google Scholar 

  148. Xie F, Zhang TA, Dreisinger D, Boyle F (2014) A critical review on solvent extraction of rare earth from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    CAS  Article  Google Scholar 

  149. Xiong Y, Adhikari CR, Kuwakita H, Inoue K, Harada H (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100(4083):4089. https://doi.org/10.1016/j.biortech.2009.03.014

    CAS  Article  Google Scholar 

  150. Xu H, Tan L, Dong H, He J, Xinxing Liu X, Qiu G, He Q, Xie J (2017) Competitive biosorption behavior of Pt(IV) and Pd(II) by Providencia vermicola. RSC Adv 7:32229. https://doi.org/10.1039/c7ra02786a

    CAS  Article  Google Scholar 

  151. Yener I, Oral EV, Dolak I, Ozdemir S, Ziyadanogullari R (2017) A new method for preconcentration of Th (IV) and Ce (III) by thermophilic Anoxybacillus flavithermus immobilized on Amberlite XAD-16 resin as a novel biosorbent. Ecol Eng 103:43–49. https://doi.org/10.1016/j.ecoleng.2017.02.056

    Article  Google Scholar 

  152. Yi Q, Fan R, Xie F, Min H, Zhang Q, Luo Z (2016a) Selective recovery of Au(III)and Pd(II) from waste PCBs using persimmon tannin adsorbent. Proced Environ Sci 31:185–194. https://doi.org/10.1016/j.proenv.2016.02.025

    CAS  Article  Google Scholar 

  153. Yi Q, Fan R, Xie F, Min H, Zhang Q, Luo Z (2016b) Recovery of palladium(II) from nitric acid medium using a natural resin prepared from presimmon dropped fruit residues. J Taiwan Inst Chem Eng 61:299–305. https://doi.org/10.1016/j.jtice.2016.01.009

    CAS  Article  Google Scholar 

  154. Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A, Kulshrestha S, Majeed S, Li X (2020) Recent advances in the recovery of metals from waste through biological processes. Bioresour Technol 297:122416. https://doi.org/10.1016/j.biortech.2019.122416

    CAS  Article  Google Scholar 

  155. Zari N, Hassan J, Tabar-Heydara K, Ahmadia SH (2016) On-line green solid phase extraction of trace rare earth elements and uranium in environmental samples and ICP OES detection. J Braz Chem Soc 27:1881–1888. https://doi.org/10.5935/0103-5053.20160074

    CAS  Article  Google Scholar 

  156. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831. https://doi.org/10.1016/j.jenvman.2016.06.059

    CAS  Article  Google Scholar 

  157. Zhang L, Zeng Y, Cheng Z (2016a) Removal of heavy metal ions using chitosan and modified chitosan. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    CAS  Article  Google Scholar 

  158. Zhang Q, He M, Chen B, Hu B (2016b) Preparation, characterization and application of Saussurea tridactyla Sch-Bip as green adsorbents for preconcentration of rare earth elements in environmental water samples. Spectrochim Acta Part B 121:1–10. https://doi.org/10.1016/j.sab.2016.04.005

    CAS  Article  Google Scholar 

  159. Zhao F, Repo F, Meng Y, Wang X, Yin D, Sillanpää M (2016) An EDTA-ß-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224. https://doi.org/10.1016/j.jcis.2015.11.069

    CAS  Article  Google Scholar 

  160. Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172:439–446. https://doi.org/10.1016/j.jhazmat.2009.07.030

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors of this paper have directly participated in the planning, execution and finalisation of the study, and all of them have read and approved the final version submitted.

Corresponding author

Correspondence to Lavinia Tofan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tofan, L., Bojoaga, CN. & Paduraru, C. Biosorption the recovery and analysis of rare earth elements and platinum group metals from real samples. A review. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-021-01330-8

Download citation

Keywords

  • Biosorption
  • Preconcentration
  • Rare earth elements
  • Platinum group metals
  • Recycling
  • Analysis