Skip to main content

Natural organic matter controls metal speciation and toxicity for marine organisms: a review

Abstract

Heavy metals are occurring in the aquatic environment as the result of natural or anthropogenic inputs, and depending on concentration, availability and resilience time, they can differently affect the animal wellness. Numerous studies reveal that more than 99% of metals in seawater are complexed with organic ligands suggesting the major role of organic complexation on metal behavior. Moreover, the amphilic character of marine natural organic matter makes this substance a relevant medium for interactions with charged and uncharged metal molecules. Here we review mechanisms and factors that control marine organic matter composition and its interactions with metals. Organic matter–metal complexes modify metal bioavailability and, in turn, change effects on living organisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ASV :

Anodic stripping voltammetry

BLM :

Biotic ligand model

CLE-CSV :

Competitive ligand exchange–cathodic stripping voltammetry

DOC :

Dissolved organic carbon

DOM :

Dissolved organic matter

FIAM :

Free Ion Activity Model

HSAB :

Hard and soft acids and bases

MLR :

Multi-linear regression

NOM :

Natural organic matter

POM :

Particulate organic matter

SSC :

Site-specific criteria

WHAM :

Windermere humic aqueous model

WER :

Water effect ratio

References

  1. Abualhaija MM, Whitby H, van den Berg CMG (2015) Competition between copper and iron for humic ligands in estuarine waters. Mar Chem 172:46–56. https://doi.org/10.1016/j.marchem.2015.03.010

    CAS  Article  Google Scholar 

  2. Adams W, Blust R, Dwyer R, Mount D, Nordheim E, Rodriguez PH, Spry D (2020) Bioavailability assessment of metals in freshwater environments: a historical review. Environ Toxicol Chem 39(1):48–59. https://doi.org/10.1002/etc.4558

    CAS  Article  Google Scholar 

  3. Aitkenhead-Peterson JA, McDowell WH, Neff JC (2003) 2 - Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic Ecosystems. Academic Press, Burlington, pp 25–70

    Chapter  Google Scholar 

  4. Amon RMW, Fitznar H-P, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46(2):287–297. https://doi.org/10.4319/lo.2001.46.2.0287

    CAS  Article  Google Scholar 

  5. Arnold WR, Santore RC, Cotsifas JS (2005) Predicting copper toxicity in estuarine and marine waters using the Biotic Ligand Model. Mar Pollut Bull 50(12):1634–1640. https://doi.org/10.1016/j.marpolbul.2005.06.035

    CAS  Article  Google Scholar 

  6. Arnold WR, Cotsifas JS, Corneillie KM (2006) Validation and update of a model used to predict copper toxicity to the marine bivalve Mytilus sp. Environ Toxicol 21(1):65–70. https://doi.org/10.1002/tox.20156

    CAS  Article  Google Scholar 

  7. Arnold WR, Cotsifas JS, Smith DS, Le Page S, Gruenthal KM (2009) A comparison of the copper sensitivity of two economically important saltwater mussel species and a review of previously reported copper toxicity data for mussels: Important implications for determining future ambient copper saltwater criteria in the USA. Environ Toxicol 24(6):618–628. https://doi.org/10.1002/tox.20452

    CAS  Article  Google Scholar 

  8. Arnold WR, Cotsifas JS, Ogle RS, DePalma SGS, Smith DS (2010) A comparison of the copper sensitivity of six invertebrate species in ambient salt water of varying dissolved organic matter concentrations. Environ Toxicol Chem 29(2):311–319. https://doi.org/10.1002/etc.45

    CAS  Article  Google Scholar 

  9. Avendaño L, Gledhill M, Achterberg EP, Rérolle VMC, Schlosser C (2016) Influence of ocean acidification on the organic complexation of iron and copper in northwest european shelf seas; a combined observational and model study. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00058

    Article  Google Scholar 

  10. Bell LE, Bluhm BA, Iken K (2016) Influence of terrestrial organic matter in marine food webs of the Beaufort Sea shelf and slope. Mar Ecol Prog Ser 550:1–24

    CAS  Article  Google Scholar 

  11. Benner R (2002) Chapter 3 - chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, pp 59–90

    Chapter  Google Scholar 

  12. Bianchi TS, Pennock JR, Twilley RR (1998) Biogeochemistry of Gulf of Mexico estuaries. John Wiley & Sons

  13. Bielmyer-Fraser GK, Harper B, Picariello C, Albritton-Ford A (2018) The influence of salinity and water chemistry on acute toxicity of cadmium to two euryhaline fish species. Comp Biochem Physiol Part C Toxicol Pharmacol 214:23–27. https://doi.org/10.1016/j.cbpc.2018.08.005

    CAS  Article  Google Scholar 

  14. Boguta P, Sokołowska Z (2012) Influence of phosphate ions on buffer capacity of soil humic acids. Int Agrophys 26(1):7–14. https://doi.org/10.2478/v10247-012-0002-1

  15. Boguta P, Sokołowska Z (2020) Zinc binding to fulvic acids: assessing the impact of pH, metal concentrations and chemical properties of fulvic acids on the mechanism and stability of formed soluble complexes. Molecules 25(6):1297

    CAS  Article  Google Scholar 

  16. Boiteau RM, Till CP, Ruacho A, Bundy RM, Hawco NJ, McKenna AM, Barbeau KA, Bruland KW, Saito MA, Repeta DJ (2016) Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern pacific zonal transect. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00243

    Article  Google Scholar 

  17. Buck KN, Moffett J, Barbeau KA, Bundy RM, Kondo Y, Wu J (2012) The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques. Limnol Oceanogr Methods 10. https://doi.org/10.4319/lom.2012.10.496

  18. Bundy RM, Biller DV, Buck KN, Bruland KW, Barbeau KA (2014) Distinct pools of dissolved iron-binding ligands in the surface and benthic boundary layer of the California Current. Limnol Oceanogr 59(3):769–787. https://doi.org/10.4319/lo.2014.59.3.0769

    CAS  Article  Google Scholar 

  19. Bundy RM, Abdulla HAN, Hatcher PG, Biller DV, Buck KN, Barbeau KA (2015) Iron-binding ligands and humic substances in the San Francisco Bay estuary and estuarine-influenced shelf regions of coastal California. Mar Chem 173:183–194. https://doi.org/10.1016/j.marchem.2014.11.005

    CAS  Article  Google Scholar 

  20. Chen Y, Fabbricino M, Benedetti MF, Korshin GV (2015) Spectroscopic in situ examination of interactions of rare earth ions with humic substances. Water Res 68:273–281. https://doi.org/10.1016/j.watres.2014.10.008

    CAS  Article  Google Scholar 

  21. Chen J, Guo Y, Lu Y, Wang B, Sun J, Zhang H, Wang H (2019a) Chemistry and biology of siderophores from marine microbes. Mar Drugs 17(10):562

    CAS  Article  Google Scholar 

  22. Chen Y, Fabbricino M, Luongo V, Korshin GV (2019) Differential absorbance study of interactions between europium, soil and aquatic NOM and model compounds. Chemosphere 235:96–103. https://doi.org/10.1016/j.chemosphere.2019.06.120

    CAS  Article  Google Scholar 

  23. Cortés-Francisco N, Caixach J (2015) Fragmentation studies for the structural characterization of marine dissolved organic matter. Anal Bioanal Chem 407(9):2455–2462. https://doi.org/10.1007/s00216-015-8499-3

    CAS  Article  Google Scholar 

  24. Craven AM, Aiken GR, Ryan JN (2012) Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model. Environ Sci Technol 46(18):9948–9955. https://doi.org/10.1021/es301015p

    CAS  Article  Google Scholar 

  25. Croot PL, Johansson M (2000) Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis 12(8):565–576

    CAS  Article  Google Scholar 

  26. Damasceno ÉP, de Figuerêdo LP, Pimentel MF, Loureiro S, Costa-Lotufo LV (2017) Prediction of toxicity of zinc and nickel mixtures to Artemia sp. at various salinities: From additivity to antagonism. Ecotoxicol Environ Saf 142:322–329. https://doi.org/10.1016/j.ecoenv.2017.04.020

    CAS  Article  Google Scholar 

  27. de Polo A, Scrimshaw MD (2012) Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas. Environ Toxicol Chem 31(2):230–238. https://doi.org/10.1002/etc.1705

    CAS  Article  Google Scholar 

  28. De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23(5):1248–1255. https://doi.org/10.1897/03-184

    Article  Google Scholar 

  29. Decho AW, Luoma SN (1994) Humic and fulvic acids: sink or source in the availability of metals to the marine bivalves Macoma balthica and Potamocorbula amurensis? Mar Ecol Prog Ser 108:133

    CAS  Article  Google Scholar 

  30. DePalma SG, Arnold WR, McGeer JC, Dixon DG, Smith DS (2011) Effects of dissolved organic matter and reduced sulphur on copper bioavailability in coastal marine environments. Ecotoxicol Environ Saf 74(3):230–237. https://doi.org/10.1016/j.ecoenv.2010.12.003

  31. Deruytter D, Garrevoet J, Vandegehuchte MB, Vergucht E, De Samber B, Vekemans B, Appel K, Falkenberg G, Delbeke K, Blust R, De Schamphelaere KAC, Vincze L, Janssen CR (2014) The combined effect of dissolved organic carbon and salinity on the bioaccumulation of copper in marine mussel larvae. Environ Sci Technol 48(1):698–705. https://doi.org/10.1021/es4024699

    CAS  Article  Google Scholar 

  32. Deruytter D, Vandegehuchte MB, Garrevoet J, De Laender F, Vergucht E, Delbeke K, Blust R, De Schamphelaere KAC, Vincze L, Janssen CR (2015) Salinity and dissolved organic carbon both affect copper toxicity in mussel larvae: copper speciation or competition cannot explain everything. Environ Toxicol Chem 34(6):1330–1336. https://doi.org/10.1002/etc.2924

    CAS  Article  Google Scholar 

  33. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals 1. Technical Basis. Environ Toxicol Chem 20(10):2383

    Article  Google Scholar 

  34. Donat JR, Lao KA, Bruland KW (1994) Speciation of dissolved copper and nickel in South San Francisco Bay: a multi-method approach. Anal Chim Acta 284:547–571. https://doi.org/10.1016/0003-2670(94)85061-5

  35. Dryden CL, Gordon AS, Donat JR (2007) Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia. Mar Chem 103(3):276–288. https://doi.org/10.1016/j.marchem.2006.09.003

    CAS  Article  Google Scholar 

  36. Dupont CL, Ahner BA (2005) Effects of copper, cadmium, and zinc on the production and exudation of thiols by Emiliania huxleyi. Limnol Oceanogr 50(2):508–515. https://doi.org/10.4319/lo.2005.50.2.0508

    CAS  Article  Google Scholar 

  37. Dupont CL, Nelson RK, Bashir S, Moffett JW, Ahner BA (2004) Novel copper-binding and nitrogen-rich thiols produced and exuded by Emiliania huxleyi. Limnol Oceanogr 49(5):1754–1762. https://doi.org/10.4319/lo.2004.49.5.1754

    CAS  Article  Google Scholar 

  38. Ellwood MJ, Van den Berg CMG (2000) Zinc speciation in the Northeastern Atlantic Ocean. Mar Chem 68:295–306. https://doi.org/10.1016/S0304-4203(99)00085-7

  39. Ellwood MJ, Van Den Berg CMG (2001) Determination of organic complexation of cobalt in seawater by cathodic stripping voltammetry. Mar Chem. 75:33–47. https://doi.org/10.1016/S0304-4203(01)00024-X

  40. Esbaugh AJ, Brix KV, Mager EM, De Schamphelaere K, Grosell M (2012) Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates. Comp Biochem Physiol Part C Toxicol Pharmacol 155(2):423–431. https://doi.org/10.1016/j.cbpc.2011.11.005

    CAS  Article  Google Scholar 

  41. Fabbricino M, Korshin GV (2005) Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination 176(1):57–69. https://doi.org/10.1016/j.desal.2004.10.026

    CAS  Article  Google Scholar 

  42. Fawcett SE, Johnson KS, Riser SC, Van Oostende N, Sigman DM (2018) Low-nutrient organic matter in the Sargasso Sea thermocline: A hypothesis for its role, identity, and carbon cycle implications. Mar Chem 207:108–123. https://doi.org/10.1016/j.marchem.2018.10.008

    CAS  Article  Google Scholar 

  43. Filella M (2009) Freshwaters: which NOM matters? Environ Chem Lett 7(1):21–35. https://doi.org/10.1007/s10311-008-0158-x

    CAS  Article  Google Scholar 

  44. Gagnon C, Fisher NS (1997) The bioavailability of sediment-bound Cd Co, and Ag to the mussel Mytilus edulis. Can J Fish Aquat Sci 54(1):147–156. https://doi.org/10.1139/f96-256

    CAS  Article  Google Scholar 

  45. Ghosh R, Banerjee DK (1997) Complexation of trace metals with humic acids from soil, sediment and sewage. Chem Speciati Bioavailab 9(1):15–19. https://doi.org/10.1080/09542299.1997.11083279

    CAS  Article  Google Scholar 

  46. Gledhill M, Buck K (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00069

    Article  Google Scholar 

  47. Gledhill M, Van den Berg CMG, Nolting R, Timmermans K (1998) Variability in the speciation of iron in the northern North Sea. Mar Chem 59:283–300. https://doi.org/10.1016/S0304-4203(97)00097-2

  48. Gledhill M, Achterberg EP, Li K, Mohamed KN, Rijkenberg MJA (2015) Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters. Mar Chem 177:421–433. https://doi.org/10.1016/j.marchem.2015.03.016

    CAS  Article  Google Scholar 

  49. Hakim A, Suzuki T, Kobayashi M (2019) Strength of humic acid aggregates: effects of divalent cations and solution pH. ACS Omega 4(5):8559–8567. https://doi.org/10.1021/acsomega.9b00124

    CAS  Article  Google Scholar 

  50. Hall LW, Anderson RD, Lewis BL, Arnold WR (2008) The Influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, eurytemora affinis. Arch Environ Contam Toxicol 54(1):44–56. https://doi.org/10.1007/s00244-007-9010-8

    CAS  Article  Google Scholar 

  51. Hassler CS, Alasonati E, Mancuso Nichols CA, Slaveykova VI (2011) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean — Role in Fe binding, chemical reactivity, and bioavailability. Mar Chem 123(1):88–98. https://doi.org/10.1016/j.marchem.2010.10.003

    CAS  Article  Google Scholar 

  52. Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW (2011b) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108(3):1076–1081. https://doi.org/10.1073/pnas.1010963108

    Article  Google Scholar 

  53. Hassler CS, van den Berg CMG, Boyd PW (2017) Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00019

    Article  Google Scholar 

  54. Henderson RK, Baker A, Parsons SA, Jefferson B (2008) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42(13):3435–3445. https://doi.org/10.1016/j.watres.2007.10.032

    CAS  Article  Google Scholar 

  55. Hesse E, O’Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21(1):117–127. https://doi.org/10.1111/ele.12878

    Article  Google Scholar 

  56. Hu X, Boyer GL (1996) Siderophore-mediated aluminum uptake by bacillus megaterium ATCC 19213. Appl Environ Microbiol 62(11):4044–4048

    CAS  Article  Google Scholar 

  57. Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press

  58. Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16(3):919–946. https://doi.org/10.1007/s10311-018-0737-4

    CAS  Article  Google Scholar 

  59. Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    CAS  Article  Google Scholar 

  60. Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol Res 212–213:103–111. https://doi.org/10.1016/j.micres.2017.10.012

    CAS  Article  Google Scholar 

  61. Kim JY, Kim K-T, Lee BG, Lim BJ, Kim SD (2013) Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 92:57–63. https://doi.org/10.1016/j.ecoenv.2013.02.004

    CAS  Article  Google Scholar 

  62. Knezovich JP, Harrison FL, Tucker JS (1981) The influence of organic chelators on the toxicity of copper to embryos of the pacific oyster, Crassostrea Gigas. Arch Environ Contam Toxicol 10(2):241–249. https://doi.org/10.1007/bf01055625

    CAS  Article  Google Scholar 

  63. Kogut MB, Voelker BM (2001) Strong copper-binding behavior of terrestrial humic substances in seawater. Environ Sci Technol 35(6):1149–1156. https://doi.org/10.1021/es0014584

    CAS  Article  Google Scholar 

  64. Kujawinski EB, Longnecker K, Barott KL, Weber RJM, Kido Soule MC (2016) microbial community structure affects marine dissolved organic matter composition. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00045

    Article  Google Scholar 

  65. Laglera LM, van den Berg CMG (2003) Copper complexation by thiol compounds in estuarine waters. Mar Chem 82(1):71–89. https://doi.org/10.1016/S0304-4203(03)00053-7

    CAS  Article  Google Scholar 

  66. Laglera LM, van den Berg CMG (2009) Evidence for geochemical control of iron by humic substances in seawater. Limnol Oceanogr 54(2):610–619. https://doi.org/10.4319/lo.2009.54.2.0610

    CAS  Article  Google Scholar 

  67. Leal MF, Van Den Berg CMG (1998) Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat Geochem 4(1):49–75. https://doi.org/10.1023/A:1009653002399

  68. Leal MFC, Vasconcelos MTSD, van den Berg CMG (1999) Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures. Limnol Oceanogr 44(7):1750–1762. https://doi.org/10.4319/lo.1999.44.7.1750

    CAS  Article  Google Scholar 

  69. Li Q, Xie L, Jiang Y, Fortner JD, Yu K, Liao P, Liu C (2019) Formation and stability of NOM-Mn(III) colloids in aquatic environments. Water Res 149:190–201. https://doi.org/10.1016/j.watres.2018.10.094

    CAS  Article  Google Scholar 

  70. Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77(1):43–54. https://doi.org/10.1016/S0304-4203(01)00074-3

    CAS  Article  Google Scholar 

  71. Liu X, Wazne M, Chou T, Xiao R, Xu S (2011) Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media. Water Res 45(1):105–112. https://doi.org/10.1016/j.watres.2010.08.022

    CAS  Article  Google Scholar 

  72. López YC, Viltres H, Gupta NK, Acevedo-Peña P, Leyva C, Ghaffari Y, Gupta A, Kim S, Bae J, Kim KS (2021) Transition metal-based metal–organic frameworks for environmental applications: a review. Environ Chem Lett 19(2):1295–1334. https://doi.org/10.1007/s10311-020-01119-1

    CAS  Article  Google Scholar 

  73. Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58(1):27–41. https://doi.org/10.1016/S0166-445X(01)00219-3

    CAS  Article  Google Scholar 

  74. Lorenzo JI, Nieto-Cid M, Álvarez-Salgado XA, Pérez P, Beiras R (2007) Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom Skeletonema costatum. Mar Chem 103(1):61–75. https://doi.org/10.1016/j.marchem.2006.05.009

    CAS  Article  Google Scholar 

  75. Macrellis HM, Trick CG, Rue EL, Smith G, Bruland KW (2001) Collection and detection of natural iron-binding ligands from seawater. Mar Chem 76(3):175–187. https://doi.org/10.1016/S0304-4203(01)00061-5

    CAS  Article  Google Scholar 

  76. Massicotte P, Stedmon C, Markager S (2017) Spectral signature of suspended fine particulate material on light absorption properties of CDOM. Mar Chem 196:98–106. https://doi.org/10.1016/j.marchem.2017.07.005

    CAS  Article  Google Scholar 

  77. Medeiros PM, Babcock-Adams L, Seidel M, Castelao RM, Di Iorio D, Hollibaugh JT, Dittmar T (2017) Export of terrigenous dissolved organic matter in a broad continental shelf. Limnol Oceanogr 62(4):1718–1731. https://doi.org/10.1002/lno.10528

    CAS  Article  Google Scholar 

  78. Middelburg JJ, Vlug T, Jaco F, van der Nat WA (1993) Organic matter mineralization in marine systems. Global Planet Change 8(1):47–58. https://doi.org/10.1016/0921-8181(93)90062-S

    Article  Google Scholar 

  79. Milne CJ, Kinniburgh DG, Tipping E (2001) Generic NICA-donnan model parameters for proton binding by humic substances. Environ Sci Technol 35(10):2049–2059. https://doi.org/10.1021/es000123j

    CAS  Article  Google Scholar 

  80. Misumi K, Lindsay K, Moore JK, Doney SC, Tsumune D, Yoshida Y (2013) Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations. Global Biogeochem Cycles 27(2):450–462. https://doi.org/10.1002/gbc.20039

    CAS  Article  Google Scholar 

  81. Moffett JW, Dupont Ch (2007) Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea, Deep Sea Research Part I. Oceanogr Res Papers 4:586–595. https://doi.org/10.1016/j.dsr.2006.12.013

  82. Mopper K, Stubbins A, Ritchie JD, Bialk HM, Hatcher PG (2007) Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev 107(2):419–442. https://doi.org/10.1021/cr050359b

    CAS  Article  Google Scholar 

  83. Muller FLL, Batchelli S (2013) Copper binding by terrestrial versus marine organic ligands in the coastal plume of River Thurso, North Scotland. Estuar Coast Shelf Sci 133:137–146. https://doi.org/10.1016/j.ecss.2013.08.024

    CAS  Article  Google Scholar 

  84. Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol Part C Toxicol Pharmacol 149(3):340–348. https://doi.org/10.1016/j.cbpc.2008.09.001

    CAS  Article  Google Scholar 

  85. Nadella SR, Tellis M, Diamond R, Smith S, Bianchini A, Wood CM (2013) Toxicity of lead and zinc to developing mussel and sea urchin embryos: Critical tissue residues and effects of dissolved organic matter and salinity. Comp Biochem Physiology Part C Toxicol Pharmacol 158(2):72–83. https://doi.org/10.1016/j.cbpc.2013.04.004

    CAS  Article  Google Scholar 

  86. Namieśnik J, Rabajczyk A (2010) The speciation and physico-chemical forms of metals in surface waters and sediments. Chem Speciat Bioavailab 22(1):1–24. https://doi.org/10.3184/095422910x12632119406391

    Article  Google Scholar 

  87. Ndungu K (2012) Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Environ Sci Technol 46(14):7644–7652. https://doi.org/10.1021/es301017x

    CAS  Article  Google Scholar 

  88. Nichols CAM, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7(4):253–271. https://doi.org/10.1007/s10126-004-5118-2

    CAS  Article  Google Scholar 

  89. Nogueira LS, Bianchini A, Smith S, Jorge MB, Diamond RL, Wood CM (2017) Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel (Mytilus galloprovincialis). Peer J 5:e3141

    Article  Google Scholar 

  90. Nolting RF, Gerringa LJA, Swagerman MJW, Timmermans KR, de Baar HJW (1998) Fe(III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean. Mar Chem 62:335–352. https://doi.org/10.1016/S0304-4203(98)00046-2

  91. Norman L, Worms IAM, Angles E, Bowie AR, Nichols CM, Ninh Pham A, Slaveykova VI, Townsend AT, David Waite T, Hassler CS (2015) The role of bacterial and algal exopolymeric substances in iron chemistry. Mar Chem 173:148–161. https://doi.org/10.1016/j.marchem.2015.03.015

    CAS  Article  Google Scholar 

  92. Nowostawska U, Kim JP, Hunter KA (2008) Aggregation of riverine colloidal iron in estuaries: a new kinetic study using stopped-flow mixing. Mar Chem 110(3):205–210. https://doi.org/10.1016/j.marchem.2008.03.001

    CAS  Article  Google Scholar 

  93. Oppo C, Bellandi S, Degli Innocenti N, Stortini AM, Loglio G, Schiavuta E, Cini R (1999) Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar Chem 63(3):235–253. https://doi.org/10.1016/S0304-4203(98)00065-6

    CAS  Article  Google Scholar 

  94. Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environ Sci Technol 17(6):342–347

    CAS  Article  Google Scholar 

  95. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. https://doi.org/10.1021/es502342r

    CAS  Article  Google Scholar 

  96. Philipps RR, Xu X, Mills GL, Bringolf RB (2018) Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (Lampsilis cariosa) and fathead minnow (Pimephales promelas). Environ Pollut 241:451–458. https://doi.org/10.1016/j.envpol.2018.05.059

    CAS  Article  Google Scholar 

  97. Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134. https://doi.org/10.1016/S0065-2113(02)75003-7

  98. Pinho GLL, Bianchini A (2010) Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model. Environ Toxicol Chem 29(8):1834–1840. https://doi.org/10.1002/etc.212

    CAS  Article  Google Scholar 

  99. Pivokonsky M, Kloucek O, Pivokonska L (2006) Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Res 40(16):3045–3052. https://doi.org/10.1016/j.watres.2006.06.028

    CAS  Article  Google Scholar 

  100. Pollet I, Bendell-Young LI (1999) Uptake of 109Cd from natural sediments by the blue mussel mytilus trossulus in relation to sediment nutritional and geochemical composition. Arch Environ Contam Toxicol 36(3):288–294. https://doi.org/10.1007/s002449900473

    CAS  Article  Google Scholar 

  101. Pontoni L, Van Hullebusch ED, Pechaud Y, Fabbricino M, Esposito G, Pirozzi F (2016) Colloidal mobilization and fate of trace heavy metals in semi-saturated artificial soil (OECD) irrigated with treated wastewater. Sustainability 8(12):1257

    Article  Google Scholar 

  102. Pontoni L, Race M, van Hullebusch ED, Fabbricino M, Esposito G, Pirozzi F (2019) Effect of sodium concentration on mobilization and fate of trace metals in standard OECD soil. Environ Pollut 250:839–848. https://doi.org/10.1016/j.envpol.2019.04.070

    CAS  Article  Google Scholar 

  103. Pontoni L, Roviello V, Race M, Savignano L, van Hullebusch ED, Esposito G, Pirozzi F, Fabbricino M (2021) Supramolecular aggregation of colloidal natural organic matter masks priority pollutants released in water from peat soil. Environ Res 195:110761. https://doi.org/10.1016/j.envres.2021.110761

    CAS  Article  Google Scholar 

  104. Poorvin L, Sander SG, Velasquez I, Ibisanmi E, LeCleir GR, Wilhelm SW (2011) A comparison of Fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from the marine bacterium Vibrio alginolyticus PWH3a. J Exp Mar Biol Ecol 399(1):43–47. https://doi.org/10.1016/j.jembe.2011.01.016

    CAS  Article  Google Scholar 

  105. Reynolds EJ, Smith DS, Chowdhury MJ, Hoang TC (2018) Chronic effects of lead exposure on topsmelt fish (Atherinops affinis): Influence of salinity, organism age, and relative sensitivity to other marine species. Environ Toxicol Chem 37(10):2705–2713. https://doi.org/10.1002/etc.4241

    CAS  Article  Google Scholar 

  106. Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67(1):85–96. https://doi.org/10.1016/S0016-7037(02)01044-X

    CAS  Article  Google Scholar 

  107. Rothman DH, Forney DC (2007) Physical model for the decay and preservation of marine organic carbon. Sci 316(5829):1325–1328. https://doi.org/10.1126/science.1138211

    CAS  Article  Google Scholar 

  108. Saad EM, Longo AF, Chambers LR, Huang R, Benitez-Nelson C, Dyhrman ST, Diaz JM, Tang Y, Ingall ED (2016) Understanding marine dissolved organic matter production: compositional insights from axenic cultures of Thalassiosira pseudonana. Limnol Oceanogr 61(6):2222–2233. https://doi.org/10.1002/lno.10367

    Article  Google Scholar 

  109. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    CAS  Article  Google Scholar 

  110. Saito MA, Moffett JW (2001) Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar Chem. 75:49–68. https://doi.org/10.1016/S0304-4203(01)00025-1

  111. Saito MA, Rocap G, Moffett JW (2005) Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol Oceanogr 50:279–290. https://doi.org/10.4319/lo.2005.50.1.0279

  112. Sánchez-Marín P, Beiras R (2012) Quantification of the increase in Pb bioavailability to marine organisms caused by different types of DOM from terrestrial and river origin. Aquat Toxicol 110–111:45–53. https://doi.org/10.1016/j.aquatox.2011.12.015

    CAS  Article  Google Scholar 

  113. Sánchez-Marín P, Lorenzo JI, Blust R, Beiras R (2007) Humic acids increase dissolved lead bioavailability for marine invertebrates. Environ Sci Technol 41(16):5679–5684. https://doi.org/10.1021/es070088h

    CAS  Article  Google Scholar 

  114. Sánchez-Marín P, Santos-Echeandía J, Nieto-Cid M, Álvarez-Salgado XA, Beiras R (2010) Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquat Toxicol 96(2):90–102. https://doi.org/10.1016/j.aquatox.2009.10.005

    CAS  Article  Google Scholar 

  115. Sánchez-Marín P, Bellas J, Mubiana VK, Lorenzo JI, Blust R, Beiras R (2011) Pb uptake by the marine mussel Mytilus sp Interactions with dissolved organic matter. Aquat Toxicol 102(1):48–57. https://doi.org/10.1016/j.aquatox.2010.12.012

    CAS  Article  Google Scholar 

  116. Sánchez-Marín P, Aierbe E, Lorenzo JI, Mubiana VK, Beiras R, Blust R (2016) Dynamic modeling of copper bioaccumulation by Mytilus edulis in the presence of humic acid aggregates. Aquat Toxicol 178:165–170. https://doi.org/10.1016/j.aquatox.2016.07.021

    CAS  Article  Google Scholar 

  117. Sander S, Mosley LM, Hunter KA (2004) Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties. Environ Sci Technol 38(18):4791–4796. https://doi.org/10.1021/es049602z

    CAS  Article  Google Scholar 

  118. Sander SG, Koschinsky A, Massoth G, Stott M, Hunter KA (2007) Organic complexation of copper in deep-sea hydrothermal vent systems. Environ Chem 4(2):81–89. https://doi.org/10.1071/EN06086

    CAS  Article  Google Scholar 

  119. Santore RC, Driscoll CT (1995) The CHESS model for calculating chemical equilibria in soils and solutions. In: Loeppert RH, Schwab AP, Goldberg S (eds) SSSA special publications. https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.2136_sssaspecpub42.c17&d=DwICAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=tr37p-LMKuZcfSC3Gl2yDqo9ZcrJey8lTPYOKaBGIF6yshihKd8RA64oNKKOSEMe&m=MQatVZ735TW66m5ad0WbHGyGgtYzdwaj6r6tmfihto&s=d9J48Fej3WYYFtVCUyYtJqEZednB5EypRTExiPGPXPc&e=

  120. Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20(10):2397–2402. https://doi.org/10.1002/etc.5620201035

    CAS  Article  Google Scholar 

  121. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

    CAS  Article  Google Scholar 

  122. Seidel M, Yager PL, Ward ND, Carpenter EJ, Gomes HR, Krusche AV, Richey JE, Dittmar T, Medeiros PM (2015) Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum. Mar Chem 177:218–231. https://doi.org/10.1016/j.marchem.2015.06.019

    CAS  Article  Google Scholar 

  123. Selck H, Decho AW, Forbes VE (1999) Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella species I. Environ Toxicol Chem 18(6):1289–1297. https://doi.org/10.1002/etc.5620180631

    CAS  Article  Google Scholar 

  124. Slaveykova VI, Wilkinson KJ (2003) Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environ Chem Lett 1(3):185–189. https://doi.org/10.1007/s10311-003-0041-8

    CAS  Article  Google Scholar 

  125. Smith RM, Martell AE, Motekaitis RJ (2004) NIST standard reference database 46. NIST critically selected stability constants of metal complexes database Ver 8. Texas A&M University, College Station, TX

  126. Swarr GJ, Kading T, Lamborg CH, Hammerschmidt CR, Bowman KL (2016) Dissolved low-molecular weight thiol concentrations from the U.S. GEOTRACES North Atlantic Ocean zonal transect. Deep Sea Res Part I Oceanogr Res Pap 116:77–87. https://doi.org/10.1016/j.dsr.2016.06.003

    CAS  Article  Google Scholar 

  127. Tait TN, Cooper CA, McGeer JC, Wood CM, Smith DS (2016) Influence of dissolved organic matter (DOM) source on copper speciation and toxicity to Brachionus plicatilis. Environ Chem 13(3):496–506. https://doi.org/10.1071/EN15123

    CAS  Article  Google Scholar 

  128. Tait TN, McGeer JC, Smith DS (2018) Testing the underlying chemical principles of the Biotic Ligand Model (BLM) to marine copper systems: measuring copper speciation using fluorescence quenching. Bull Environ Contam Toxicol 100(1):76–81. https://doi.org/10.1007/s00128-017-2262-8

    CAS  Article  Google Scholar 

  129. Tang D, Hung C-C, Warnken KW, Santschi PH (2000) The distribution of biogenic thiols in surface waters of Galveston Bay. Limnol Oceanogr 45(6):1289

    CAS  Article  Google Scholar 

  130. Tang D, Warnken KW, Santschi PH (2001) Organic complexation of copper in surface waters of Galveston Bay. Limnol Oceanogr 46(2):321–330. https://doi.org/10.4319/lo.2001.46.2.0321

    CAS  Article  Google Scholar 

  131. Tappin AD, Millward GE, Fitzsimons MF (2007) Distributions, cycling and recovery of amino acids in estuarine waters and sediments. Environ Chem Lett 5(3):161–167. https://doi.org/10.1007/s10311-007-0099-9

    CAS  Article  Google Scholar 

  132. Tipping E (1994) WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20(6):973–1023. https://doi.org/10.1016/0098-3004(94)90038-8

    CAS  Article  Google Scholar 

  133. Tipping E (2002) Cation binding by humic substances. Cambridge University Press

  134. Velasquez I, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG (2011) Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern Coast of New Zealand. Mar Chem 126(1):97–107. https://doi.org/10.1016/j.marchem.2011.04.003

    CAS  Article  Google Scholar 

  135. Veltman K, Huijbregts MAJ, Hendriks AJ (2010) Integration of Biotic Ligand Models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms. Environ Sci Technol 44(13):5022–5028. https://doi.org/10.1021/es903697c

    CAS  Article  Google Scholar 

  136. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Ann Rev Mar Sci 1(1):43–63. https://doi.org/10.1146/annurev.marine.010908.163712

    Article  Google Scholar 

  137. Wall NA, Choppin GR (2003) Humic acids coagulation: influence of divalent cations. Appl Geochem 18(10):1573–1582. https://doi.org/10.1016/S0883-2927(03)00046-5

    CAS  Article  Google Scholar 

  138. Wang W, He C, Gao Y, Zhang Y, Shi Q (2019) Isolation and characterization of hydrophilic dissolved organic matter in waters by ion exchange solid phase extraction followed by high resolution mass spectrometry. Environ Chem Lett 17(4):1857–1866. https://doi.org/10.1007/s10311-019-00898-6

    CAS  Article  Google Scholar 

  139. Wells MJM (2019) Supramolecular answers to the organic matter controversy. J Environ Qual 48(6):1644–1651. https://doi.org/10.2134/jeq2019.02.0089

    CAS  Article  Google Scholar 

  140. Wencewicz TA, Long TE, Möllmann U, Miller MJ (2013) Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target staphylococcus aureus. Bioconj Chem 24(3):473–486. https://doi.org/10.1021/bc300610f

    CAS  Article  Google Scholar 

  141. Whitby H, Hollibaugh JT, van den Berg CMG (2017) Chemical speciation of copper in a salt marsh estuary and bioavailability to thaumarchaeota. Front Mar Sci 4:178

    Article  Google Scholar 

  142. Witter AE Hutchins DA, Butler A, Luther III, GW (2000) Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar Chem 69(1):1–17. https://doi.org/10.1016/S0304-4203(99)00087-0

  143. Wu X, Jia Y, Zhu H (2012) Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M meretrix. Environ Pollut 165:133–139. https://doi.org/10.1016/j.envpol.2012.02.023

    CAS  Article  Google Scholar 

  144. Yang R, van den Berg CMG (2009) Metal complexation by humic substances in seawater. Environ Sci Technol 43(19):7192–7197. https://doi.org/10.1021/es900173w

    CAS  Article  Google Scholar 

  145. Yao S, Fabbricino M, Race M, Ferraro A, Pontoni L, Aimone O, Chen Y (2020) Study of the digestate as an innovative and low-cost adsorbent for the removal of dyes in wastewater. Processes. https://doi.org/10.3390/pr8070852

    Article  Google Scholar 

  146. Ye Y, Völker C, Gledhill M (2020) Exploring the iron-binding potential of the ocean using a combined pH and DOC parameterization. Global Biogeochem Cycles 34(6):e2019GB006425. https://doi.org/10.1029/2019GB006425

    CAS  Article  Google Scholar 

  147. Zakem EJ, Levine NM (2019) Systematic variation in marine dissolved organic matter stoichiometry and remineralization ratios as a function of lability. Global Biogeochem Cycles 33(11):1389–1407. https://doi.org/10.1029/2019GB006375

    CAS  Article  Google Scholar 

  148. Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257. https://doi.org/10.1016/j.watres.2009.06.005

    CAS  Article  Google Scholar 

  149. Zhang T, Pan J-F, Hunt DE, Chen M, Wang B (2018) Organic matter modifies biochemical but not most behavioral responses of the clam Ruditapes philippinarum to nanosilver exposure. Mar Environ Res 133:105–113. https://doi.org/10.1016/j.marenvres.2017.10.016

    CAS  Article  Google Scholar 

  150. Zhong H, Evans D, Wang W-X (2012) Uptake of dissolved organic carbon-complexed 65Cu by the green mussel perna viridis. Environ Sci Technol 46(4):2383–2390. https://doi.org/10.1021/es203175q

    CAS  Article  Google Scholar 

  151. Zitoun R, Clearwater SJ, Hassler C, Thompson KJ, Albert A, Sander SG (2019) Copper toxicity to blue mussel embryos (Mytilus galloprovincialis): The effect of natural dissolved organic matter on copper toxicity in estuarine waters. Sci Total Environ 653:300–314. https://doi.org/10.1016/j.scitotenv.2018.10.263

    CAS  Article  Google Scholar 

  152. Zolfaghari M, Drogui P, Brar SK, Buelna G, Dubé R (2017) Unwanted metals and hydrophobic contaminants in bioreactor effluents are associated with the presence of humic substances. Environ Chem Lett 15(3):489–494. https://doi.org/10.1007/s10311-016-0598-7

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Maria Cocurullo, PhD student of the SZN-Open University (UK), for graphic creation of the Figure 2. Special thanks to Prof. Francesco Regoli for critical reading of the manuscript. Contract grant sponsor: CLV was supported by a PhD fellowship co-founded by Stazione Zoologica Anton Dohrn and Marche Polytechnic University.

Funding

No funding was received for conducting this study.

Author information

Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception of the work, performed the literature search and data analysis, and drafted the manuscript. Ludovico Pontoni, Massimiliano Fabbricino and Annamaria Locascio critically revised and edited the work.

Corresponding author

Correspondence to Annamaria Locascio.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors whose names appear on the submission approved the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pontoni, L., La Vecchia, C., Boguta, P. et al. Natural organic matter controls metal speciation and toxicity for marine organisms: a review. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-021-01310-y

Download citation

Keywords

  • NOM
  • DOM
  • Seawater
  • Heavy metals
  • Biotic ligand model