Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review

Abstract

Photocatalytic optical fibers are promising materials for degrading organic pollutants in wastewater, owing to their low light mass transfer resistance, their high efficiency of light utilization, and their inhibition of photocatalyst deactivation. In particular, optical fibers have been applied for the removal of phenols, dyes, organic acids and antibiotics in wastewater. Yet, optical fibers have limitations such as poor photocatalytic activity and low sustainability. Here, we review the principle and use of photocatalytic optical fibers, including photocatalytic quartz and plastic optical fibers, for the degradation of the organic pollutants in water. We present methods to enhance photocatalytic activity, light utilization efficiency, and adhesion strength by using TiO2-based photocatalytic coatings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

source with an incident angle of 84.2°; ETS-l0 was synthesized by using TiC14 and a sodium silicate aqueous solution (Ji et al. 2011). Photocatalytic reactor, cd with catalyst-coated quartz optical fibers (QOFs) and outdoor continuous-flow experimental setup for rhodamine B (RhB) and degradation of organics (Lin et al. 2016)

Fig. 4
Fig. 5
Fig. 6

References

  1. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026. https://doi.org/10.1002/chin.201448247

    CAS  Article  Google Scholar 

  2. Barton I, Matejec V, Matousek J (2016) Photocatalytic activity of nanostructured TiO2 coating on glass slides and optical fibers for methylene blue or methyl orange decomposition under different light excitation. J Photochem Photobiol A 317:72–80. https://doi.org/10.1016/j.jphotochem.2015.11.009

    CAS  Article  Google Scholar 

  3. Bauer R, Waldner G, Fallmann H, Hager S, Klare M, Krutzler T, Malato S, Maletzky P (1999) The photo-fenton reaction and the TiO2/UV process for waste water treatment− novel developments. Catal Today 53(1):131–144. https://doi.org/10.1016/S0920-5861(99)00108-X

    CAS  Article  Google Scholar 

  4. Chen CJ, Wu CC, Tsieh LT, Chen KC (2019) Treatment of trichloroethylene with photocatalyst-coated optical fiber. Water 11(11):2391. https://doi.org/10.3390/w11112391

    CAS  Article  Google Scholar 

  5. Chen XB, Liu L, Yu PY, Mao Y (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750. https://doi.org/10.1126/science.1200448

    CAS  Article  Google Scholar 

  6. Cheng FY, Lin GM, Hu XL, Xi SB, Xie K (2019) Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-11623-w

    CAS  Article  Google Scholar 

  7. Choi W, Ko JY, Park H, Chung JS (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal B-Environ 31(3):209–220. https://doi.org/10.1016/S0926-3373(00)00281-2

    CAS  Article  Google Scholar 

  8. Choi YS, Kim BW (2000) Photocatalytic disinfection of E coli in a UV/TiO2-immobilised optical-fibre reactor. J Chem Technol Biotechnol 75(12):1145–1150. https://doi.org/10.1002/1097-4660(200012)75:12%3c1145::AID-JCTB341%3e3.0.CO;2-X

    CAS  Article  Google Scholar 

  9. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9

    CAS  Article  Google Scholar 

  10. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    CAS  Article  Google Scholar 

  11. Danion A, Disdier J, Guillard C, Abdelmalek F, Jaffrezic-Renault N (2004a) Characterization and study of a single-TiO2-coated optical fiber reactor. Appl Catal B-Environ 52(3):213–223. https://doi.org/10.1016/j.apcatb.2004.04.005

    CAS  Article  Google Scholar 

  12. Danion A, Bordes C, Disdier J, Gauvrit JY, Guillard C, Lantéri P, Jaffrezic-Renault N (2004b) Optimization of a single TiO2-coated optical fiber reactor using experimental design. J Photochem Photobiol A 168(3):161–167. https://doi.org/10.1016/j.jphotochem.2004.03.002

    CAS  Article  Google Scholar 

  13. Danion A, Disdier J, Guillard C, Païssé O, Jaffrezic-Renault N (2006) Photocatalytic degradation of imidazolinone fungicide in TiO2-coated optical fiber reactor. Appl Catal B-Environ 62(3–4):274–281. https://doi.org/10.1016/j.apcatb.2005.08.008

    CAS  Article  Google Scholar 

  14. Danion A, Disdier J, Guillard C, Jaffrezic-Renault N (2007) Malic acid photocatalytic degradation using a TiO2-coated optical fiber reactor. J Photochem Photobiol A 190(1):135–140. https://doi.org/10.1016/j.jphotochem.2007.03.022

    CAS  Article  Google Scholar 

  15. Dawson P, Romanowski M (2018) Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence. J Am Chem Soc 140(17):5714–5718. https://doi.org/10.1021/jacs.7b13677

    CAS  Article  Google Scholar 

  16. Deng HM, Wang C, Cai WJ, Liu Y, Zhang LX (2020) Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci Total Environ 720:137–635. https://doi.org/10.1016/j.scitotenv.2020.137635

    CAS  Article  Google Scholar 

  17. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156. https://doi.org/10.1016/j.nbt.2014.01.001

    CAS  Article  Google Scholar 

  18. He C, Gu LP, Xu ZX, He H, Fu G, Han FX, Huang B, Pan XJ (2020) Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems. Environ Chem Lett 18:561–576. https://doi.org/10.1007/s10311-019-00960-3

    CAS  Article  Google Scholar 

  19. Herrmann JM (1995) Heterogeneous photocatalysis: an emerging discipline involving multiphase systems. Catal Today 24(1–2):157–164. https://doi.org/10.1016/0920-5861(95)00005-Z

    CAS  Article  Google Scholar 

  20. Hofstadler K, Bauer R, Novalic S, Heisler G (1994) New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environ Sci Technol 28(4):670–674. https://doi.org/10.1021/es00053a021

    CAS  Article  Google Scholar 

  21. Hu JT, Gao QH, Xu L, Wang ML, Zhang MJ, Zhang K, Liu WH, Wu GZ (2018) Functionalization of cotton fabrics with highly durable polysiloxane–TiO2 hybrid layers: potential applications for photo-induced water–oil separation, UV shielding, and self-cleaning. J Mater Chem A 6:6085–6095. https://doi.org/10.1039/C7TA11231A

    CAS  Article  Google Scholar 

  22. Hu Y, Xu JJ, Yuan CW, Lin J, Yin ZD (2005) A single TiO2-coated side-glowing optical fiber for photocatalytic wastewater treatment. Sci Bull 50(18):1979–1984. https://doi.org/10.1007/BF03322787

    CAS  Article  Google Scholar 

  23. Indermühle C, Puzenat E, Dappozze F, Simonet F, Lamaa L, Peruchon L, Brochier C, Guillard C (2018) Photocatalytic activity of titania deposited on luminous textiles for water treatment. J Photochem Photobiol A 361:67–75. https://doi.org/10.1016/j.jphotochem.2018.04.047

    CAS  Article  Google Scholar 

  24. Isnaeni VA, Arutanti Q, Sustini E, Aliah H, Khairurrijal K, Abdullah M (2013) A novel system for producing photocatalytic titanium dioxide-coated fibers for decomposing organic pollutants in water. Environ Prog Sustain 32(1):42–51. https://doi.org/10.1002/ep.10596

    CAS  Article  Google Scholar 

  25. Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F (2011) Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules. Korean J Chem Eng 28(2):531–538. https://doi.org/10.1007/s11814-010-0355-8

    CAS  Article  Google Scholar 

  26. Ji ZX, Callahan DM, Ismail MN, Warzywoda J, Sacco A (2011) Development and characterization of a titanosilicate ETS-10-coated optical fiber reactor towards the photodegradation of methylene blue. J Photochem Photobiol A 217(1):22–28. https://doi.org/10.1016/j.jphotochem.2010.09.011

    CAS  Article  Google Scholar 

  27. Joo H, Jeong H, Jeon M, Moon II (2003) The use of plastic optical fibers in photocatalysis of trichloroethylene. Sol Energy Mater Sol Cells 79(1):93–101. https://doi.org/10.1016/S0927-0248(02)00372-0

    CAS  Article  Google Scholar 

  28. Katz A, Shon HK, Chekli L, Kim JH (2019) TiO2-coated optical fibres for groundwater remediation. J Nanosci Nanotechno 19(2):1086–1089. https://doi.org/10.1166/jnn.2019.15970

    CAS  Article  Google Scholar 

  29. Kim S, Kim M, Lim SK, Park Y (2017) Titania-coated plastic optical fiber fabrics for remote photocatalytic degradation of aqueous pollutants. J Environ Chem Eng 5(2):1899–1905. https://doi.org/10.1016/j.jece.2017.03.036

    CAS  Article  Google Scholar 

  30. Li DD, Wang LL, Zhang GJ (2013) A photocatalytic reactor derived from microstructured polymer optical fiber preform. Opt Commun 286:182–186. https://doi.org/10.1016/j.optcom.2012.08.092

    CAS  Article  Google Scholar 

  31. Li J, Yang YJ (2018) Optical fiber-based in situ spectroscopic characterization of supported TiO2 in photocatalytic dye degradation. Mater Res Express 5(1):015010. https://doi.org/10.1088/2053-1591/aa9eee

    CAS  Article  Google Scholar 

  32. Li WW, Yu HQ, Rittmann BE (2015) Chemistry: reuse water pollutants. Nature 528(7580):29–31. https://doi.org/10.1038/528029a

    CAS  Article  Google Scholar 

  33. Li YY, Peng YK, Hu LS, Zheng JW, Prabhakaran D, Wu S, Puchtler TJ, Li M, Wong KY, Taylor RA, Tsang SCE (2019) Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-12385-1

    CAS  Article  Google Scholar 

  34. Lin HF, Valsaraj KT (2005) Development of an optical fiber monolith reactor for photocatalytic wastewater treatment. J Appl Electrochem 35(7–8):699–708. https://doi.org/10.1007/s10800-005-1364-x

    CAS  Article  Google Scholar 

  35. Lin HF, Valsaraj KT (2006) An optical fiber monolith reactor for photocatalytic wastewater treatment. AIChE J 52(6):2271–2280. https://doi.org/10.1002/aic.10823

    CAS  Article  Google Scholar 

  36. Lin L, Wang HY, Luo HM, Xu P (2015) Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. J Photochem Photobiol A 307:88–98. https://doi.org/10.1016/j.jphotochem.2015.04.010

    CAS  Article  Google Scholar 

  37. Lin L, Wang HY, Luo HM, Xu P (2016) Photocatalytic treatment of desalination concentrate using optical fibers coated with nanostructured thin films: impact of water chemistry and seasonal climate variations. Photochem Photobiol 92(3):379–387. https://doi.org/10.1111/php.12589

    CAS  Article  Google Scholar 

  38. Lin L, Wang HY, Jiang WB, Mkaouar AR, Xu P (2017) Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 333:162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044

    CAS  Article  Google Scholar 

  39. Ling L, Tugaoen H, Brame J, Sinha S, Li CH, Schoepf J, Hristovski K, Kim JH, Shang C, Westerhoff P (2017) Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ Sci Technol 51(22):13319–13326. https://doi.org/10.1021/acs.est.7b03454

    CAS  Article  Google Scholar 

  40. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. https://doi.org/10.1038/nmat3151

    CAS  Article  Google Scholar 

  41. Liu J, Han L, An N, Xing L, Ma HY, Cheng L, Yang JC, Zhang QC (2017a) Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl Catal B-Environ 202:642–652. https://doi.org/10.1016/j.apcatb.2016.09.057

    CAS  Article  Google Scholar 

  42. Liu YJ, Lu YQ, Yang XS, Zheng XL, Wen SH, Wang F, Vidal X, Zhao JB, Liu DM, Zhou ZG, Ma CS, Zhou JJ, Piper JA, Xi P, Jin DY (2017b) Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543(7644):229–233. https://doi.org/10.1038/nature21366

    CAS  Article  Google Scholar 

  43. Louangsouphom B, Wang XJ, Song JK, Wang X (2019) Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ Chem Lett 17:1061–1066. https://doi.org/10.1007/s10311-018-00827-z

    CAS  Article  Google Scholar 

  44. Luo SJ, Van-Ooij WJ (2002) Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol 16(13):1715–1735. https://doi.org/10.1163/156856102320396102

    CAS  Article  Google Scholar 

  45. Madima N, Mishra SB, Mishra II, AK, (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review Environ Chem Lett 18:1169–1191. https://doi.org/10.1007/s10311-020-01001-0

    CAS  Article  Google Scholar 

  46. Marinangeli RE, Ollis DF (1977) Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber AIChe J 23(4):415–426. https://doi.org/10.1002/aic.690230403

    CAS  Article  Google Scholar 

  47. Matsunaga T, Yamaoka H, Ohtani S, Harada Y, Fujii T, Ishikawa T (2008) High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers. Appl Catal A 351(2):231–238. https://doi.org/10.1016/j.apcata.2008.09.020

    CAS  Article  Google Scholar 

  48. Mecha AC, Chollom MN (2020) Photocatalytic ozonation of wastewater: a review. Environ Chem Lett 18:1491–1507. https://doi.org/10.1007/s10311-020-01020-x

    CAS  Article  Google Scholar 

  49. Miller LW, Anderson MA (1998) Fiber-mediated titanium dioxide photocatalysis. J Adv Oxid Technol 3(3):238–242. https://doi.org/10.1515/jaots-1998-0307

    CAS  Article  Google Scholar 

  50. Moreira NFF, Sampaio MJ, Ribeiro AR, Silva CG, Faria JL, Silva AMT (2019) Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl Catal B-Environ 248:184–192. https://doi.org/10.1016/j.apcatb.2019.02.001

    CAS  Article  Google Scholar 

  51. Mudhoo A, Paliya S, Goswami P, Singh M, Lofrano G, Carotenuto M, Carraturo F, Libralato G, Guida M, Usman M, Kumar S (2020) Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review. Environ Chem Lett 18:1825–1903. https://doi.org/10.1007/s10311-020-01045-2

    CAS  Article  Google Scholar 

  52. Murgolo S, Franz S, Arab H, Bestetti M, Falletta E, Mascolo G (2019) Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Res 164:114–290. https://doi.org/10.1016/j.watres.2019.114920

    CAS  Article  Google Scholar 

  53. Nithya R, Sivasankari C, Thirunavukkarasu A (2020) Electronic waste generation, regulation and metal recovery: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01111-9

    Article  Google Scholar 

  54. Pan L, Ai MH, Huang CY, Yin L, Liu X, Zhang RR, Wang SB, Jiang Z, Zhang XW, Zhou JJ, Mi WB (2020) Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-14333-w

    CAS  Article  Google Scholar 

  55. Patra A, Friend CS, Kapoor R, Prasad PN (2003) Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites. Chem Mater 15(19):3650–3655. https://doi.org/10.1021/cm020897u

    CAS  Article  Google Scholar 

  56. Peill NJ, Hoffmann MR (1995) Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ Sci Technol 29(12):2974–2981. https://doi.org/10.1021/es00012a013

    CAS  Article  Google Scholar 

  57. Peill NJ, Hoffmann MR (1996) Chemical and physical characterization of a Tio2-coated fiber optic cable reactor. Environ Sci Technol 30(9):2806–2812. https://doi.org/10.1021/es960047d

    CAS  Article  Google Scholar 

  58. Peill NJ, Hoffmann MR (1997) Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation. J Sol Energy Eng 119(3):229–236. https://doi.org/10.1115/1.2888024

    CAS  Article  Google Scholar 

  59. Peill NJ, Bourne L, Hoffmann MR (1997) Iron (III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor. J Photochem Photobiol A 108(2–3):221–228. https://doi.org/10.1016/S1010-6030(97)00018-X

    CAS  Article  Google Scholar 

  60. Piaskowski K, Świderska-Dąbrowska R, Zarzycki PK (2018) Dye removal from water and wastewater using various physical, chemical, and biological processes. J AOAC Int 101(5):1371–1384. https://doi.org/10.5740/jaoacint.18-0051

    CAS  Article  Google Scholar 

  61. Saravanan A, Kumar PS, Vo DVN, Yaashikaa PR, Karishma S, Jeevanantham S, Gayathri B, Bharathi VD (2020a) Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01077-8

    Article  Google Scholar 

  62. Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Kamalesh R, Sneha S, Yaashikaa PR (2020b) Methods of detection of food-borne pathogens: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01072-z

    Article  Google Scholar 

  63. Sharma VK, Jinadatha C, Lichtfouse E (2020) Environmental chemistry is most relevant to study coronavirus pandemics. Environ Chem Lett 18:993–996. https://doi.org/10.1007/s10311-020-01017-6

    CAS  Article  Google Scholar 

  64. Shi H, Ni J, Zheng T, Wang X, Wang Q (2019) Remediation of wastewater contaminated by antibiotics, a review. Environ Chem Lett 18(2):345–360. https://doi.org/10.1007/s10311-019-00945-2

    CAS  Article  Google Scholar 

  65. Simas A, Mores R, Steffens J, Dallago RM, Kunz A, Michelon W, Fongaro G, Viancelli A (2019) Electrodisinfection of real swine wastewater for water reuse. Environ Chem Lett 17:495–499. https://doi.org/10.1007/s10311-018-0782-z

    CAS  Article  Google Scholar 

  66. Teixeira S, Magalhães B, Martins PM, Kühn K, Soler L, Lanceros-Méndez S, Cuniberti G (2018) Reusable photocatalytic optical fibers for underground, deep-sea, and turbid water remediation. Glob Chall 2(3):1700124. https://doi.org/10.1002/gch2.201700124

    Article  Google Scholar 

  67. Tugaoen HON, Garcia-Segura S, Hristovski K, Westerhoff P (2018) Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci Total Environ 613:1331–1338. https://doi.org/10.1016/j.scitotenv.2017.09.242

    CAS  Article  Google Scholar 

  68. Ullah S, Ferreira-Neto EP, Hazra C, Parveen R, Rojas-Mantilla HD, Calegaro ML, Serge-Correales YE, Rodrigues-Filho UP, Ribeiro SJL (2019) Broad spectrum photocatalytic system based on BiVO4 and NaYbF4:Tm3+ upconversion particles for environmental remediation under UV-visible-NIR illumination. Appl Catal B-Environ 243:121–135. https://doi.org/10.1016/j.apcatb.2018.09.091

    CAS  Article  Google Scholar 

  69. Wang PH, Zhou T, Wang R, Lim TT (2011) Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. Water Res 45(16):5015–5026. https://doi.org/10.1016/j.watres.2011.07.002

    CAS  Article  Google Scholar 

  70. Wang W, Ding MY, Lu CH, Ni YR, Xu ZZ (2014a) A study on upconversion UV–vis–NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4: Yb3+, Tm3+@TiO2 core–shell structured photocatalyst. Appl Catal B-Environ 144:379–385. https://doi.org/10.1016/j.apcatb.2013.07.035

    CAS  Article  Google Scholar 

  71. Wang XH, Liu HL, Zhang WX, Cheng WZ, Liu X, Like XM, Wu JH (2014b) Synthesis and characterization of polymer-coated AgZnO nanoparticles with enhanced photocatalytic activity. RSC Adv 4(83):44011–44017. https://doi.org/10.1039/C4RA09382H

    CAS  Article  Google Scholar 

  72. Wu TT, Niu P, Yang YQ, Yin LC, Tan J, Zhu HZ, Irvine JTS, Wang LZ, Liu G, Cheng HM (2019) Homogeneous doping of substitutional nitrogen/carbon in TiO2 plates for visible light photocatalytic water oxidation. Adv Funct Mater 29(25):1901943. https://doi.org/10.1002/adfm.201901943

    CAS  Article  Google Scholar 

  73. Xu JJ, Ao YH, Fu DG, Lin J, Lin YH, Shen XW, Yuan CW, Yin ZD (2008) Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light. J Photochem Photobiol A 199(2–3):165–169. https://doi.org/10.1016/j.jphotochem.2008.05.019

    CAS  Article  Google Scholar 

  74. Yang J, Cao Y, Zhang N (2020) Color-mixing effects of photosensitive organic dyes initiated by superoxide anion radicals under visible-light irradiation. Environ Chem Lett 18:2127–2132. https://doi.org/10.1007/s10311-020-01043-4

    CAS  Article  Google Scholar 

  75. Zhang SQ, Chen L, Liu HB, Guo W, Yang YX, Guo YH, Huo MX (2012) Design of H3PW12O40/TiO2 and Ag/H3PW12O40/TiO2 film-coated optical fiber photoreactor for the degradation of aqueous rhodamine B and 4-nitrophenol under simulated sunlight irradiation. Chem Eng J 200:300–309. https://doi.org/10.1016/j.cej.2012.06.060

    CAS  Article  Google Scholar 

  76. Zhong NB, Liao Q, Zhu S, Zhao MF, Huang Y, Chen R (2015) Temperature-independent polymer optical fiber evanescent wave sensor. Sci Rep 5:11508. https://doi.org/10.1038/srep11508

    CAS  Article  Google Scholar 

  77. Zhong NB, Chen M, Chang HX, Zhang TH, Wang ZK, Xin X (2018) Optic fiber with Er3+: YAlO3/SiO2/TiO2 coating and polymer membrane for selective detection of phenol in water. Sens Actuators B 273:1744–1753. https://doi.org/10.1016/j.snb.2018.07.092

    CAS  Article  Google Scholar 

  78. Zhong NB, Chen M, Luo YH, Wang ZK, Xin X, Rittmann BE (2019a) A novel photocatalytic optical hollow-fiber with high photocatalytic activity for enhancement of 4-chlorophenol degradation. Chem Eng J 355:731–739. https://doi.org/10.1016/j.cej.2018.08.167

    CAS  Article  Google Scholar 

  79. Zhong NB, Chen M, Wang ZK, Zhong DJ, Chang HX, Zhao MF, Xu YL, Li M (2019b) A highly sensitive photocatalytic plastic optic-fiber sensor for selective detection of phenol in aqueous solutions. Sens Actuators B 285:341–349. https://doi.org/10.1016/j.snb.2019.01.042

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received from the National Natural Science Foundation of China (NSFC) (51876018, 51806026), Scientific and Technological Research Program, Chongqing Municipal Education Commission Foundation (KJQN201801117), Postgraduate Research Innovation Project of Chongqing University of Technology (ycx20192047), and Postgraduate Research Innovation Project of Chongqing (CYS18309, CYS19318).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nianbing Zhong or Haixing Chang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhong, L., Yuan, J. et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review. Environ Chem Lett (2020). https://doi.org/10.1007/s10311-020-01141-3

Download citation

Keywords

  • Photocatalytic optical fibers
  • TiO2-based photocatalytic coating
  • Organic pollutants
  • Wastewater
  • Photocatalytic degradation
  • Photocatalytic activity