Abstract
Nanotechnology has recently found applications in many fields such as consumer products, medicine and environment. Nanoparticles display unique properties and vary widely according to their dimensions, morphology, composition, agglomeration and uniformity states. Nanomaterials include carbon-based nanoparticles, metal-based nanoparticles, organic-based nanoparticles and composite-based nanoparticles. The increasing production and use of nanoparticles result in higher exposure to humans and the environment, thus raising issues of toxicity. Here we review the properties, applications and toxicity of metal and non-metal-based nanoparticles. Nanoparticles are likely to be accumulated in sensitive organs such as heart, liver, spleen, kidney and brain after inhalation, ingestion and skin contact. In vitro and in vivo studies indicate that exposure to nanoparticles could induce the production of reactive oxygen species (ROS), which is a predominant mechanism leading to toxicity. Excessive production of ROS causes oxidative stress, inflammation and subsequent damage to proteins, cell membranes and DNA. ROS production induced by nanoparticles is controlled by size, shape, surface, composition, solubility, aggregation and particle uptake. The toxicity of a metallic nanomaterial may differ depending on the oxidation state, ligands, solubility and morphology, and on environmental and health conditions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahamed M, Siddiqui M, Akhtar M, Ahmad I, Pant A, Alhadlaq H (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396(2):578–583. https://doi.org/10.1016/j.bbrc.2010.04.156
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Hosokawa T, Saito T et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008
Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA (2012) Al2O3 nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol 26(11):469–476. https://doi.org/10.1002/jbt.21448
Ammendolia MG, Iosi F, Maranghi F, Tassinari R, Cubadda F, Aureli F, Raggi A, Superti F et al (2017) Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem Toxicol 102:63–75. https://doi.org/10.1016/j.fct.2017.01.031
Annangi B, Bach J, Vales G, Rubio L, Marcos R, Hernandez A (2015) Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9(2):138–147. https://doi.org/10.3109/17435390.2014.900582
Ansari SM, Bhor RD, Pai KR, Sen D, Mazumder S, Ghosh K, Kolekar YD, Ramana CV (2017) Cobalt nanoparticles for biomedical applications: facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci 414:171–187. https://doi.org/10.1016/j.apsusc.2017.03.002
Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA (2019) Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasit Vectors 12(1):280. https://doi.org/10.1186/s13071-019-3528-2
Arshadi M, Taghvaei H, Abdolmaleki M, Lee M, Eskandarloo H, Abbaspourrad A (2019) Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent. Appl Energy 242:1562–1572
Aschberger K, Johnston H, Stone V, Aitken R, Tran C, Hankin S, Peters S, Christensen F (2010) Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58(3):455–473. https://doi.org/10.1016/j.yrtph.2010.08.017
Asmatulu RE (2013) Nanotechnology safety, 1st edn. Elsevier, Amsterdam
Asmatulu R, Nguyen P, Asmatulu E (2013) Nanotechnology safety in the automotive industry. In: Khan WS, Asmatulu R (eds) Nanotechnology safety. Elsevier, Amsterdam, pp 57–72
Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014) Presence of nanosilica (E551) in commercial food products: Tnf-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol 30(2):89–100. https://doi.org/10.1007/s10565-014-9271-8
Azmi M, Shad K (2017) Role of nanostructure molecules in enhancing the bioavailability of oral drugs. In: Grumezescu DFA (ed) Nanostructures for novel therapy, 1st edn. Elsevier, Amsterdam, pp 375–407
Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. https://doi.org/10.7508/ibj.2016.01.001
Bali AS, Sidhu GPS, Kumar V (2020) Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01012-x
Bendale Y, Bendale V, Paul S (2017) Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res 6(2):141–148. https://doi.org/10.1016/j.imr.2017.01.006
Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2: Mr17–Mr71. arXiv preprint arXiv:0801.3280
Cameron SJ, Hosseinian F, Willmore WG (2018) A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci. https://doi.org/10.3390/ijms19072030
Cappellini F, Hedberg Y, McCarrick S, Hedberg J, Derr R, Hendriks G, Odnevall Wallinder I, Karlsson HL (2018) Mechanistic insight into reactivity and (geno) toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 12(6):602–620. https://doi.org/10.1080/17435390.2018.1470694
Chattopadhyay S, Dash SK, Tripathy S, Das B, Mandal D, Pramanik P, Roy S (2015) Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact 226:58–71. https://doi.org/10.1016/j.cbi.2014.11.016
Chen LQ, Fang L, Ling J, Ding CZ, Kang B, Huang CZ (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28(3):501–509. https://doi.org/10.1021/tx500479m
Ciucă AG, Grecu CI, Rotărescu P, Gheorghe I, Bolocan A, Grumezescu AM, Holban AM, Andronescu E (2017) Nanostructures for drug delivery: pharmacokinetic and toxicological aspects. In: Andronescu E, Grumezescu AM (eds) Nanostructures for drug delivery, 1st edn. Elsevier, Amsterdam, pp 941–957
Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14(4):477–485. https://doi.org/10.1007/s10311-016-0583-1
De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to Zno nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246(3):116–127. https://doi.org/10.1016/j.taap.2010.04.012
Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL (2017) Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 32(1):127–137. https://doi.org/10.1093/mutage/gew030
Di Virgilio AL, Reigosa M, Arnal PM, Lorenzo F, de Mele M (2010) Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in chinese hamster ovary (Cho-K1) cells. J Hazard Mater 177(1–3):711–718. https://doi.org/10.1016/j.jhazmat.2009.12.089
Donmez Gungunes C, Seker S, Elcin AE, Elcin YM (2017) A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol 40(2):215–227. https://doi.org/10.1080/01480545.2016.1199563
Duan J, Yu Y, Li Y, Yu Y, Li Y, Zhou X, Huang P, Sun Z (2013) Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS ONE 8(4):e62087. https://doi.org/10.1371/journal.pone.0062087
Elliott JT, Rosslein M, Song NW, Toman B, Kinsner-Ovaskainen A, Maniratanachote R, Salit ML, Petersen EJ et al (2017) Toward achieving harmonization in a nano-cytotoxicity assay measurement through an interlaboratory comparison study. Altex 34(2):201–218. https://doi.org/10.14573/altex.1605021
Ema M, Hougaard KS, Kishimoto A, Honda K (2016) Reproductive and developmental toxicity of carbon-based nanomaterials: a literature review. Nanotoxicology 10(4):391–412. https://doi.org/10.3109/17435390.2015.1073811
EPA U (2017) Technical fact sheet: nanomaterials
Fard J, Jafari S, Eghbal M (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447–454. https://doi.org/10.15171/apb.2015.061
Farré M, Barceló D (2012) Introduction to the analysis and risk of nanomaterials in environmental and food samples. In: Barcelo D, Farre M (eds) Comprehensive analytical chemistry, vol 59, 1st edn. Elsevier, Amsterdam, pp 1–32
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8(1):2082. https://doi.org/10.1038/s41598-018-19628-z
Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750. https://doi.org/10.1007/s00204-010-0545-5
Fu P, Xia Q, Hwang H, Ray P, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75. https://doi.org/10.1016/j.jfda.2014.01.005
Future Markets I (2013) The global market for aluminium oxide nanoparticles (76). Retrieved from http://www.nanotechmag.com/wp-content/uploads/2014/09/ALUMINIUM-OXIDE-NANOPARTICLES-2013-.pdf
Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420. https://doi.org/10.1155/2014/498420
Gatto F, Moglianetti M, Pompa PP, Bardi G (2018) Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomaterials 8(6):392. https://doi.org/10.3390/nano8060392
Gea M, Bonetta S, Iannarelli L, Giovannozzi AM, Maurino V, Bonetta S, Hodoroaba VD, Armato C et al (2019) Shape-engineered titanium dioxide nanoparticles (TiO2-Nps): cytotoxicity and genotoxicity in bronchial epithelial cells. Food Chem Toxicol 127:89–100. https://doi.org/10.1016/j.fct.2019.02.043
Geranio L, Hommes G, Shahgaldian P, Wirth-Heller A, Pieles U, Corvini PF-X (2010) Radio (14C)-and fluorescent-doubly labeled silica nanoparticles for biological and environmental toxicity assessment. Environ Chem Lett 8(3):247–251
Gliga A, Skoglund S, Wallinder I, Fadeel B, Karlsson H (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):11. https://doi.org/10.1186/1743-8977-11-11
Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Romer S, Fattal E (2015) Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 482(1–2):75–83. https://doi.org/10.1016/j.ijpharm.2014.11.042
Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M (2012) Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to Zno nanoparticles. Nanoscale Res Lett 7(1):602. https://doi.org/10.1186/1556-276X-7-602
Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 23(7):1760
Guo Z, Zeng G, Cui K, Chen A (2018) Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett 17(1):319–333. https://doi.org/10.1007/s10311-018-0800-1
Gurunathan S, Kim J (2016) Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomed 11:1927. https://doi.org/10.2147/IJN.S105264
Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, Plendl J, Goetz M, et al (2011) Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. In: Paper presented at the Journal of Physics: Conference Series
Hanna SK, Montoro Bustos AR, Peterson AW, Reipa V, Scanlan LD, Hosbas Coskun S, Cho TJ, Johnson ME et al (2018) Agglomeration of Escherichia Coli with positively charged nanoparticles can lead to artifacts in a standard caenorhabditis elegans toxicity assay. Environ Sci Technol 52(10):5968–5978. https://doi.org/10.1021/acs.est.7b06099
Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, Polakova K, Tucek J et al (2016) Toxicity of carbon dots: effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–248. https://doi.org/10.1016/j.carbon.2015.12.027
He X, Aker WG, Fu PP, Hwang H-M (2015) Toxicity of engineered metal oxide nanomaterials mediated by Nano–Bio–Eco–interactions: a review and perspective. Environ Sci Nano 2(6):564–582. https://doi.org/10.1039/c5en00094g
Horie M, Nishio K, Kato H, Shinohara N, Nakamura A, Fujita K, Kinugasa S, Endoh S et al (2013) In vitro evaluation of cellular influences induced by stable fullerene C(7)(0) medium dispersion: induction of cellular oxidative stress. Chemosphere 93(6):1182–1188. https://doi.org/10.1016/j.chemosphere.2013.06.067
Huang C, Aronstam R, Chen D, Huang Y (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to Zno nanoparticles. Toxicol In Vitro 24(1):45–55. https://doi.org/10.1016/j.tiv.2009.09.007
IARC (2010) Carbon black, titanium dioxide, and talc, vol 93. IARC Press, International Agency for Research on Cancer, Lyon
ISO (2015) Vocabulary: part 1—core terms. In: International Standardisation Organisation (ISO), Technical Specification ISO/TS
Jain AK, Singh D, Dubey K, Maurya R, Pandey AK (2019) Zinc oxide nanoparticles induced gene mutation at the HGPRT locus and cell cycle arrest associated with apoptosis in V-79 cells. J Appl Toxicol 39(5):735–750. https://doi.org/10.1002/jat.3763
Jeevanandam J, Barhoum A, Chan Y, Dufresne A, Danquah M (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98
Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28(4):691–702. https://doi.org/10.1016/j.cclet.2017.01.021
Kahraman E, Güngör S, Özsoy Y (2017) Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 8(11):967–985
Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications. Toxicity and regulation. Environ Chem Lett 16(1):43–58. https://doi.org/10.1007/s10311-017-0662-y
Kim I-S, Baek M, Choi S-J (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458. https://doi.org/10.1166/jnn.2010.2340
Kim IY, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416. https://doi.org/10.1016/j.nano.2015.03.004
Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, Crosera M, Cierniak A et al (2013) Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed 8:3963–3975. https://doi.org/10.2147/IJN.S49612
Kumar H, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic nanoparticle: a review. Biomed J Sci Techn Res 4(2):3765–3775
Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK (2018) Toxicological implications of platinum nanoparticle exposure: stimulation of intracellular stress, inflammatory response, and akt signaling in vitro. J Toxicol 2018:1367801. https://doi.org/10.1155/2018/1367801
Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M (2014) Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv 11(7):1087–1101
Li JJ, Hartono D, Ong C-N, Bay B-H, Yung L-YL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003. https://doi.org/10.1016/j.biomaterials.2010.04.014
Li B, Li Q, Mo J, Dai H (2017) Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol 8:51. https://doi.org/10.3389/fphar.2017.00051
Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9–10):1533–1545. https://doi.org/10.1002/smll.201201531
Liu Q, Li H, Xia Q, Liu Y, Xiao K (2015) Role of surface charge in determining the biological effects of Cdse/Zns quantum dots. Int J Nanomed 10:7073–7088. https://doi.org/10.2147/IJN.S94543
Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14(1):1–12. https://doi.org/10.1016/j.nano.2017.08.011
Magdolenova Z, Drlickova M, Henjum K, Runden-Pran E, Tulinska J, Bilanicova D, Pojana G, Kazimirova A et al (2015) Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology 9(Suppl 1):44–56. https://doi.org/10.3109/17435390.2013.847505
Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, Gröters S, Wiench K et al (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol 10(1):23. https://doi.org/10.1186/1743-8977-10-23
Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916. https://doi.org/10.1155/2013/942916
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed 12:5421–5431. https://doi.org/10.2147/IJN.S138624
McWilliams A (2016) The maturing nanotechnology market: products and applications. BCC Research, Wellesley
Mengesha AE, Youan BBC (2013) Nanodiamonds for drug delivery systems. In: Narayan R (ed) Diamond-based materials for biomedical applications. Woodhead Publishing, Cambridge, pp 186–205
Ming Z, Feng S, Yilihamu A, Ma Q, Yang S, Yang ST (2018) Toxicity of pristine and chemically functionalized fullerenes to white rot fungus phanerochaete chrysosporium. Nanomaterials (Basel). https://doi.org/10.3390/nano8020120
Mukherjee S, Sau S, Madhuri D, Bollu VS, Madhusudana K, Sreedhar B, Banerjee R, Patra CR (2016) Green synthesis and characterization of monodispersed gold nanoparticles: toxicity study, delivery of doxorubicin and its bio-distribution in mouse model. J Biomed Nanotechnol 12(1):165–181
Mulenos MR, Liu J, Lujan H, Guo B, Lichtfouse E, Sharma VK, Sayes CM (2020) Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: evidence for the low toxicity of nanoparticles. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00985-z
Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989. https://doi.org/10.2147/IJN.S13244
Negahdary M, Chelongar R, Zadeh SK, Ajdary M (2015) The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv Biomed Res. https://doi.org/10.4103/2277-9175.153893
Nelson BC, Petersen EJ, Marquis BJ, Atha DH, Elliott JT, Cleveland D, Watson SS, Tseng I-H et al (2013) Nist gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 7(1):21–29. https://doi.org/10.3109/17435390.2011.626537
Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and drosophila melanogaster. Int J Nanomed 12:1621. https://doi.org/10.2147/IJN.S124403
NIOSH (2011) Occupational exposure to titanium dioxide. In: Current intelligence bulletin, 63. National Institute for Occupational Safety and Health, Cincinnati. Retrieved from
NTP (2016) Report on carcinogens monograph on cobalt and cobalt compounds that release cobalt ions in vivo. Retrieved from
Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N (2016) Markers for toxicity to Hepg2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 374:18–28. https://doi.org/10.1016/j.tox.2016.11.012
Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24(11):1899–1904. https://doi.org/10.1021/tx200244g
Patel KD, Singh RK, Kim H-W (2019) Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 6(3):434–469. https://doi.org/10.1039/c8mh00966j
Petersen EJ, Pinto RA, Shi X, Huang Q (2012) Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J Hazard Mater 243:73–79
Petersen EJ, Reipa V, Watson SS, Stanley DL, Rabb SA, Nelson BC (2014) DNA damaging potential of photoactivated P25 titanium dioxide nanoparticles. Chem Res Toxicol 27(10):1877–1884. https://doi.org/10.1021/tx500340v
Peynshaert K, Soenen SJ, Manshian BB, Doak SH, Braeckmans K, De Smedt SC, Remaut K (2017) Coating of quantum dots strongly defines their effect on lysosomal health and autophagy. Acta Biomater 48:195–205. https://doi.org/10.1016/j.actbio.2016.10.022
Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a by-2 plant cell suspension culture model. Environ Exp Bot 91:1–11. https://doi.org/10.1016/j.envexpbot.2013.03.002
Proquin H, Rodriguez-Ibarra C, Moonen CG, Urrutia Ortega IM, Briede JJ, de Kok TM, van Loveren H, Chirino YI (2017) Titanium dioxide food additive (E171) induces ros formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis 32(1):139–149. https://doi.org/10.1093/mutage/gew051
Pulit-Prociak J, Stokłosa K, Banach M (2014) Nanosilver products and toxicity. Environ Chem Lett 13(1):59–68. https://doi.org/10.1007/s10311-014-0490-2
Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Gayathri C, Bharath L et al (2016) Comparative cytotoxicity and genotoxicity of cobalt (Ii, Iii) oxide, iron (Iii) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35(2):170–183. https://doi.org/10.1177/0960327115579208
Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494. https://doi.org/10.1007/s10311-016-0586-y
Rizk MZ, Ali SA, Hamed MA, El-Rigal NS, Aly HF, Salah HH (2017) Toxicity of titanium dioxide nanoparticles: effect of dose and time on biochemical disturbance, oxidative stress and genotoxicity in mice. Biomed Pharmacother 90:466–472. https://doi.org/10.1016/j.biopha.2017.03.089
Roy A, Bhattacharya J (2015) Nanotechnology in industrial wastewater treatment. IWA Publishing, London
Sadeghi L, Tanwir F, Yousefi Babadi V (2015) In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells. Exp Toxicol Pathol 67(2):197–203. https://doi.org/10.1016/j.etp.2014.11.010
Sahu D, Kannan G, Vijayaraghavan R (2014) Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflamm. https://doi.org/10.1155/2014/827019
Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int 22(6):4122–4143. https://doi.org/10.1007/s11356-014-3994-1
Samadi A, Klingberg H, Jauffred L, Kjaer A, Bendix PM, Oddershede LB (2018) Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 10(19):9097–9107. https://doi.org/10.1039/c8nr02275e
Sandeep KV (2013) Nanomaterials-based health care and bioanalytical applications: trend and prospects. J Nanomater Mol Nanotechnol 2(2):2–6. https://doi.org/10.4172/2324-8777.1000109
Sarathy V, Tratnyek PG, Nurmi JT, Baer DR, Amonette JE, Chun CL, Penn RL, Reardon EJ (2008) Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity. J Phys Chem C 112(7):2286–2293
Sardoiwala MN, Kaundal B, Roy Choudhury S (2018) Development of engineered nanoparticles expediting diagnostic and therapeutic applications across blood–brain barrier. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications, 1st edn. Elsevier, Amsterdam, pp 696–709
Scherer MD, Sposito JCV, Falco WF, Grisolia AB, Andrade LHC, Lima SM, Machado G, Nascimento VA et al (2019) Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ 660:459–467. https://doi.org/10.1016/j.scitotenv.2018.12.444
Schmid D, Micić V, Laumann S, Hofmann T (2015) Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide. J Contam Hydrol 181:36–45
Senapati VA, Kumar A (2018) Zno nanoparticles dissolution, penetration and toxicity in human epidermal cells. Influence of pH. Environ Chem Lett 16(3):1129–1135
Senut MC, Zhang Y, Liu F, Sen A, Ruden DM, Mao G (2016) Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives. Small 12(5):631–646. https://doi.org/10.1002/smll.201502346
Sergio M, Behzadi H, Otto A, van der Spoel D (2013) Fullerenes toxicity and electronic properties. Environ Chem Lett 11(2):105–118
Shi Y, Wang F, He J, Yadav S, Wang H (2010) Titanium dioxide nanoparticles cause apoptosis in BEAS-2b cells through the caspase 8/T-Bid-independent mitochondrial pathway. Toxicol Lett 196(1):21–27. https://doi.org/10.1016/j.toxlet.2010.03.014
Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. https://doi.org/10.1186/1743-8977-10-15
Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials (Basel) 5(3):1351–1365. https://doi.org/10.3390/nano5031351
Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA (2015) Analysis of toxicity biomarkers of fullerene C(6)(0) nanoparticles by confocal fluorescent microscopy. Bull Exp Biol Med 158(4):443–449. https://doi.org/10.1007/s10517-015-2781-4
Shvedova A, Pietroiusti A, Fadeel B, Kagan V (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261(2):121–133. https://doi.org/10.1016/j.taap.2012.03.023
Srikanth K, Mahajan A, Pereira E, Duarte AC, Venkateswara Rao J (2015) Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in chinook salmon (Chse-214) cells. J Appl Toxicol 35(10):1133–1140. https://doi.org/10.1002/jat.3142
Stark W, Stoessel P, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805. https://doi.org/10.1039/C4CS00362D
Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A, Inkielewicz-Stepniak I (2019) Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med 30(2):22. https://doi.org/10.1007/s10856-019-6221-2
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S (2019) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized Zno in cosmetic products. Drug Chem Toxicol 42(1):84–93. https://doi.org/10.1080/01480545.2018.1491987
Sung JH, Ji JH, Park JD, Song MY, Song KS, Ryu HR, Yoon JU, Jeon KS et al (2011) Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8(1):16. https://doi.org/10.1186/1743-8977-8-16
Tan KX, Barhoum A, Pan S, Danquah MK (2018) Risks and toxicity of nanoparticles and nanostructured materials. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architecture nanostructures. Elsevier, Amsterdam, pp 121–139
Thakor AS, Paulmurugan R, Kempen P, Zavaleta C, Sinclair R, Massoud TF, Gambhir SS (2011) Oxidative stress mediates the effects of Raman-active gold nanoparticles in human cells. Small 7(1):126–136. https://doi.org/10.1002/smll.201001466
Thota S, Crans DC (2018) Metal nanoparticles: synthesis and applications in pharmaceutical sciences. Wiley, New York
Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S et al (2014) Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol 34(11):1209–1219. https://doi.org/10.1002/jat.3038
Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Morales JDM, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of Silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol Lett 276:11–20. https://doi.org/10.1016/j.toxlet.2017.05.007
Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA (2014) Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. https://doi.org/10.1007/s11051-014-2379-1
Waissi-Leinonen GC, Petersen EJ, Pakarinen K, Akkanen J, Leppanen MT, Kukkonen JV (2012) Toxicity of fullerene (C60) to sediment-dwelling invertebrate chironomus riparius larvae. Environ Toxicol Chem 31(9):2108–2116. https://doi.org/10.1002/etc.1926
Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25(7):1402–1411. https://doi.org/10.1021/tx200513t
Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q (2017) Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14(1):38. https://doi.org/10.1186/s12989-017-0219-z
Wang W, Zeng C, Feng Y, Zhou F, Liao F, Liu Y, Feng S, Wang X (2018) The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the P53-caspase pathway. Environ Pollut 233:218–225. https://doi.org/10.1016/j.envpol.2017.10.053
Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250. https://doi.org/10.1021/es204168d
Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40. https://doi.org/10.1002/jat.3499
Xiang K, Dou Z, Li Y, Xu Y, Zhu J, Yang S, Sun H, Liu Y (2012) Cytotoxicity and Tnf-Α secretion in Raw264.7 macrophages exposed to different fullerene derivatives. J Nanosci Nanotechnol 12(3):2169–2178. https://doi.org/10.1166/jnn.2012.5681
Xiao L, Liu C, Chen X, Yang Z (2016) Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol 90:76–83. https://doi.org/10.1016/j.fct.2016.02.002
Xin X, Huang G, An C, Feng R (2019) Interactive toxicity of triclosan and nano-TiO2 to green alga Eremosphaera viridis in Lake Erie: a new perspective based on fourier transform infrared spectromicroscopy and synchrotron-based X-Ray fluorescence imaging. Environ Sci Technol 53(16):9884–9894
Yadav HKS, Almokdad AA, Shaluf SIM, Debe MS (2019) Polymer-based nanomaterials for drug-delivery carriers. In: Mohapatra Shyam, Ranjan Shivendu, Dasgupta Nandita, Kumar Raghvendra, Thomas Sabu (eds) Nanocarriers for drug delivery. Elsevier, Amsterdam, pp 531–556
Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in hacat keratinocytes-generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263(1):81–88. https://doi.org/10.1016/j.taap.2012.06.001
Yu S, Rui Q, Cai T, Wu Q, Li Y, Wang D (2011) Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al(2)O(3)-nanoparticle. Environ Toxicol Pharmacol 32(2):233–241. https://doi.org/10.1016/j.etap.2011.05.008
Yu Y, Duan J, Yu Y, Li Y, Liu X, Zhou X, Ho K-f, Tian L et al (2014) Silica nanoparticles induce autophagy and autophagic cell death in Hepg2 cells triggered by reactive oxygen species. J Hazard Mater 270:176–186. https://doi.org/10.1016/j.jhazmat.2014.01.028
Zhang X-D, Wu H-Y, Wu D, Wang Y-Y, Chang J-H, Zhai Z-B, Meng A-M, Liu P-X et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed 5:771. https://doi.org/10.2147/IJN.S8428
Zhang XQ, Yin LH, Tang M, Pu YP (2011) Zno, TiO(2), Sio(2), and Al(2)O(3) Nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24(6):661–669. https://doi.org/10.3967/0895-3988.2011.06.011
Zhang B, Bian W, Pal A, He Y (2015) Macrophage apoptosis induced by aqueous C60 aggregates changing the mitochondrial membrane potential. Environ Toxicol Pharmacol 39(1):237–246. https://doi.org/10.1016/j.etap.2014.11.013
Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W (2018) Progress in enhancement of Co2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy 118:527–535
Zhou F, Liao F, Chen L, Liu Y, Wang W, Feng S (2019) The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environ Sci Pollut Res Int 26(2):1911–1920. https://doi.org/10.1007/s11356-018-3695-2
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sengul, A.B., Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett 18, 1659–1683 (2020). https://doi.org/10.1007/s10311-020-01033-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-020-01033-6