Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review

Abstract

Rising anthropogenic activities have increased waste production and, in turn, the concentration of contaminants in waters. In particular, endocrine disruptors are natural and synthetic contaminants that cause many health problems. Endocrine disruptors bioaccumulate and alter the endocrine systems of both humans and wildlife. Endocrine disruptors are health hazards even at low concentrations. Their recalcitrant properties make the current water and wastewater management system inefficient for their removal. Hence, new removal methods need to be designed and employed. Here, we review alternative technologies for the removal of endocrine disruptors from aqueous matrices, with focus on adsorption, membrane separation and biodegradation. The efficiency, materials, methods, advantages and disadvantages of these treatments are analysed and compared. The main endocrine disruptors include parabens, bisphenols, phthalates, estradiols, nonylphenols and some pesticides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67. https://doi.org/10.1016/j.cis.2008.07.002

    CAS  Article  Google Scholar 

  2. Ahsan MA, Islam MT, Hernandez C et al (2018a) Adsorptive removal of sulfamethoxazole and bisphenol A from contaminated water using functionalized carbonaceous material derived from tea leaves. J Environ Chem Eng 6:4215–4225. https://doi.org/10.1016/J.JECE.2018.06.022

    CAS  Article  Google Scholar 

  3. Ahsan MA, Islam MT, Imam MA et al (2018b) Biosorption of bisphenol A and sulfamethoxazole from water using sulfonated coffee waste: isotherm, kinetic and thermodynamic studies. J Environ Chem Eng 6:6602–6611. https://doi.org/10.1016/J.JECE.2018.10.004

    CAS  Article  Google Scholar 

  4. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667. https://doi.org/10.1038/nprot.2006.370

    CAS  Article  Google Scholar 

  5. Alves ACF, Antero RVP, de Oliveira SB et al (2019) Activated carbon produced from waste coffee grounds for an effective removal of bisphenol-A in aqueous medium. Environ Sci Pollut Res 26:24850–24862. https://doi.org/10.1007/s11356-019-05717-7

    CAS  Article  Google Scholar 

  6. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trends Anal Chem 80:641–654

    CAS  Article  Google Scholar 

  7. Arsalan F, She Q, Fane AG, Field RW (2018) Exploring the differences between forward osmosis and reverse osmosis fouling. J Memb Sci 565:241–253. https://doi.org/10.1016/j.memsci.2018.08.034

    CAS  Article  Google Scholar 

  8. Artham T, Doble M (2012) Bisphenol A and metabolites released by biodegradation of polycarbonate in seawater. Environ Chem Lett 10:29–34. https://doi.org/10.1007/s10311-011-0324-4

    CAS  Article  Google Scholar 

  9. Baig N, Ihsanullah SM, Saleh TA (2019) Graphene-based adsorbents for the removal of toxic organic pollutants: a review. J Environ Manag 244:370–382. https://doi.org/10.1016/j.jenvman.2019.05.047

    CAS  Article  Google Scholar 

  10. Balabanič D, Hermosilla D, Merayo N et al (2012) Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. J Environ Sci Heal Part A Toxic Hazard Subst Environ Eng 47:1350–1363. https://doi.org/10.1080/10934529.2012.672301

    CAS  Article  Google Scholar 

  11. Belver C, Bedia J, Gómez-Avilés A et al (2019) Semiconductor photocatalysis for water purification. Elsevier, Amsterdam

    Book  Google Scholar 

  12. Benner J, Helbling DE, Kohler HPE et al (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976

    CAS  Article  Google Scholar 

  13. Besha AT, Gebreyohannes AY, Tufa RA et al (2017) Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: a review. J Environ Chem Eng 5:2395–2414. https://doi.org/10.1016/j.jece.2017.04.027

    CAS  Article  Google Scholar 

  14. Bhatnagar A, Minocha AK (2006) Conventional and non-conventional adsorbents for removal of pollutants from water—a review. Indian J Chem Technol 13:203–217

    CAS  Google Scholar 

  15. Bila DM, Dezotti M (2007) Desreguladores endócrinos no meio ambiente: Efeitos e conseqüências. Quim Nova 30:651–666. https://doi.org/10.1590/s0100-40422007000300027

    CAS  Article  Google Scholar 

  16. Boateng LK, Heo J, Flora JRV et al (2013) Molecular level simulation of the adsorption of bisphenol A and 17α-ethinyl estradiol onto carbon nanomaterials. Sep Purif Technol 116:471–478. https://doi.org/10.1016/J.SEPPUR.2013.06.028

    CAS  Article  Google Scholar 

  17. Bodzek M, Konieczny K (2018) Membranes in organic micropollutants removal. Curr Org Chem 22:1070–1102

    CAS  Article  Google Scholar 

  18. Bolong N, Ismail AF, Salim MR et al (2010) Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol A from wastewater. Sep Purif Technol 73:92–99. https://doi.org/10.1016/j.seppur.2010.01.001

    CAS  Article  Google Scholar 

  19. Borthakur P, Boruah PK, Das MR et al (2018) Adsorption of 17α-ethynyl estradiol and β-estradiol on graphene oxide surface: an experimental and computational study. J Mol Liq 269:160–168. https://doi.org/10.1016/J.MOLLIQ.2018.08.013

    CAS  Article  Google Scholar 

  20. Braghiroli FL, Bouafif H, Neculita CM, Koubaa A (2018) Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3889-8

    Article  Google Scholar 

  21. Braun JM (2017) Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 13:161–173. https://doi.org/10.1038/nrendo.2016.186

    CAS  Article  Google Scholar 

  22. Caldas SS, Arias JLO, Rombaldi C et al (2019) Occurrence of pesticides and PPCPs in surface and drinking water in southern Brazil: data on 4-year monitoring. J Braz Chem Soc 30:71–80. https://doi.org/10.21577/0103-5053.20180154

    CAS  Article  Google Scholar 

  23. Caliman FA, Gavrilescu M (2009) Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. CLEAN Soil Air Water 37:277–303

    CAS  Article  Google Scholar 

  24. Cartagena P, El Kaddouri M, Cases V et al (2013) Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR-NF/RO treatment. Sep Purif Technol 110:132–143. https://doi.org/10.1016/j.seppur.2013.03.024

    CAS  Article  Google Scholar 

  25. Cases V, Alonso V, Argandoña V et al (2011) Endocrine disrupting compounds: a comparison of removal between conventional activated sludge and membrane bioreactors. Desalination 272:240–245. https://doi.org/10.1016/j.desal.2011.01.026

    CAS  Article  Google Scholar 

  26. Chang HS, Choo KH, Lee B, Choi SJ (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172:1–12. https://doi.org/10.1016/j.jhazmat.2009.06.135

    CAS  Article  Google Scholar 

  27. Chang KL, Hsieh JF, Ou BM et al (2012) Adsorption studies on the removal of an endocrine-disrupting compound (bisphenol A) using activated carbon from rice straw agricultural waste. Sep Sci Technol 47:1514–1521. https://doi.org/10.1080/01496395.2011.647212

    CAS  Article  Google Scholar 

  28. Chen X, Fujiwara T, Fukahori S, Ishigaki T (2015) Factors affecting the adsorptive removal of bisphenol A in landfill leachate by high silica Y-type zeolite. Environ Sci Pollut Res 22:2788–2799. https://doi.org/10.1007/s11356-014-3522-3

    CAS  Article  Google Scholar 

  29. Cheng A, Wang L, Wang XD (2010) Research on removal of estradiol in water by nanofiltration membrane. In: 2010 4th international conference on bioinformatics and biomedical engineering iCBBE 2010, pp 1–4. https://doi.org/10.1109/ICBBE.2010.5515627

  30. Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13:381–394. https://doi.org/10.1007/s10311-015-0524-4

    CAS  Article  Google Scholar 

  31. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    CAS  Article  Google Scholar 

  32. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    CAS  Article  Google Scholar 

  33. Dai R, Guo H, Tang CY et al (2019a) Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds. Environ Sci Technol 53:13776–13783. https://doi.org/10.1021/acs.est.9b05343

    CAS  Article  Google Scholar 

  34. Dai Y, Zhang N, Xing C et al (2019b) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12–27. https://doi.org/10.1016/j.chemosphere.2019.01.161

    CAS  Article  Google Scholar 

  35. De Andrade JR, Oliveira MF, Da Silva MGC, Vieira MGA (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127. https://doi.org/10.1021/acs.iecr.7b05137

    CAS  Article  Google Scholar 

  36. de Souza FM, dos Santos OAA, Vieira MGA (2019) Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environ Sci Pollut Res 26:18329–18342. https://doi.org/10.1007/s11356-019-05196-w

    CAS  Article  Google Scholar 

  37. Dehghani MH, Ghadermazi M, Bhatnagar A et al (2016) Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Environ Chem Eng 4:2647–2655. https://doi.org/10.1016/j.jece.2016.05.011

    CAS  Article  Google Scholar 

  38. Delgado LF, Charles P, Glucina K, Morlay C (2012) The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—a review. Sci Total Environ 435–436:509–525. https://doi.org/10.1016/j.scitotenv.2012.07.046

    CAS  Article  Google Scholar 

  39. Dharupaneedi SP, Nataraj SK, Nadagouda M et al (2019) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866. https://doi.org/10.1016/j.seppur.2018.09.003

    CAS  Article  Google Scholar 

  40. Dhyani V, Bhaskar T (2019) Pyrolysis of biomass. Cellul Biofuels Altern Feed Convers Process Prod Liq Gaseous Biofuels 3:217–244. https://doi.org/10.1016/B978-0-12-816856-1.00009-9

    Article  Google Scholar 

  41. Djebri N, Boutahala M, Chelali NE et al (2017) Adsorption of bisphenol a and 2,4,5-trichlorophenol onto organo-acid-activated bentonite from aqueous solutions in single and binary systems. Desalin Water Treat 66:383–393. https://doi.org/10.5004/dwt.2017.20220

    CAS  Article  Google Scholar 

  42. Dubinin MM, Radushkevich LV (1947) Equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem 55:331–333

    Google Scholar 

  43. Dyer A (2001) Zeolites. In: Encyclopedia of materials: science and technology. pp 9859–9863. https://doi.org/10.1016/B0-08-043152-6/01784-8

  44. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427

    CAS  Article  Google Scholar 

  45. European Commission (2019) Effects of endocrine disruptors. https://ec.europa.eu/environment/chemicals/endocrine/definitions/affect_en.htm. Accessed 1 Mar 2020

  46. European Parliament Committees (2019) Endocrine disruptors: from scientific evidence to human health protection. https://www.europarl.europa.eu/committees/en/supporting-analyses-search.html. Accessed 1 Mar 2020

  47. Fan J, Wang X, Teng W et al (2017) Phenyl-functionalized mesoporous silica materials for the rapid and efficient removal of phthalate esters. J Colloid Interface Sci 487:354–359. https://doi.org/10.1016/j.jcis.2016.10.042

    CAS  Article  Google Scholar 

  48. Fang Z, Hu Y, Wu X et al (2018) A novel magnesium ascorbyl phosphate graphene-based monolith and its superior adsorption capability for bisphenol A. Chem Eng J 334:948–956. https://doi.org/10.1016/j.cej.2017.10.067

    CAS  Article  Google Scholar 

  49. Fernández L, Louvado A, Esteves VI et al (2017) Biodegradation of 17β-estradiol by bacteria isolated from deep sea sediments in aerobic and anaerobic media. J Hazard Mater 323:359–366. https://doi.org/10.1016/j.jhazmat.2016.05.029

    CAS  Article  Google Scholar 

  50. Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  51. Gadupudi CK, Rice L, Xiao L, Kantamaneni K (2019) Endocrine disrupting compounds removal methods from wastewater in the United Kingdom: a review. Science 1:15. https://doi.org/10.3390/sci1010015.v1

    Article  Google Scholar 

  52. Gómez-Espinosa RM, Arizmendi-Cotero D (2017) Role of membrane on emerging contaminant removal. Handb Environ Chem. https://doi.org/10.1007/698

    Article  Google Scholar 

  53. Gong R, Liang J, Chen J, Huang F (2009) Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles. Int J Environ Sci Technol 6:539–544. https://doi.org/10.1007/BF03326093

    CAS  Article  Google Scholar 

  54. Gore AC, Crews D, Doan LL et al (2014) Introduction to endocrine disrupting chemicals (EDCS) a guide for public interest organizations and policy-makers. Endocrine Society and IPEN. https://ipen.org/sites/default/files/documents/ipen-intro-edc-v1_9a-en-web.pdf. Accessed 1 Mar 2020

  55. Goswami L, Vinoth Kumar R, Borah SN et al (2018) Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: a review. J Water Process Eng 26:314–328. https://doi.org/10.1016/j.jwpe.2018.10.024

    Article  Google Scholar 

  56. Goyal N, Barman S, Bulasara VK (2016) Quaternary ammonium salt assisted removal of genistein and bisphenol S from aqueous solution by nanozeolite NaY: equilibrium, kinetic and thermodynamic studies. J Mol Liq 224:1154–1162. https://doi.org/10.1016/j.molliq.2016.10.088

    CAS  Article  Google Scholar 

  57. Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) SpringerBriefs in molecular science—green chemistry for sustainability: ultrasound technology in green chemistry. Emerging compounds removal from wastewater. Springer, Dordrecht, pp 15–37

    Chapter  Google Scholar 

  58. Gröger TM, Käfer U, Zimmermann R (2020) Gas chromatography in combination with fast high-resolution time-of-flight mass spectrometry: technical overview and perspectives for data visualization. TrAC Trends Anal Chem 122:115677

    Article  CAS  Google Scholar 

  59. Gullicks H, Hasan H, Das D et al (2011) Biofilm fixed film systems. Water Switz 3:843–868. https://doi.org/10.3390/w3030843

    CAS  Article  Google Scholar 

  60. Guo H, Deng Y, Yao Z et al (2017) A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: mechanistic insights and implications. Water Res 121:197–203. https://doi.org/10.1016/j.watres.2017.05.037

    CAS  Article  Google Scholar 

  61. Guo H, Peng LE, Yao Z et al (2019) Non-polyamide based nanofiltration membranes using green metal-organic coordination complexes: implications for the removal of trace organic contaminants. Environ Sci Technol 53:2688–2694. https://doi.org/10.1021/acs.est.8b06422

    CAS  Article  Google Scholar 

  62. Hacıosmanoğlu GG, Doğruel T, Genç S et al (2019) Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan. J Hazard Mater 374:43–49. https://doi.org/10.1016/j.jhazmat.2019.04.015

    CAS  Article  Google Scholar 

  63. Hadibarata T, Kristanti RA, Mahmoud AH (2019) Occurrence of endocrine-disrupting chemicals (EDCs) in river water and sediment of the Mahakam River. J Water Health 18:38–47. https://doi.org/10.2166/wh.2019.100

    Article  Google Scholar 

  64. Hallé C, Huck PM, Peldszus S (2015) Emerging contaminant removal by biofiltration: temperature, concentration, and EBCT impacts. J Am Water Works Assoc 107:E364–E379

    Article  Google Scholar 

  65. Han Q, Liang Q, Zhang X et al (2016) Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples. J Chromatogr A 1447:39–46. https://doi.org/10.1016/j.chroma.2016.04.032

    CAS  Article  Google Scholar 

  66. Heindel JJ, Newbold R, Schug TT (2015) Endocrine disruptors and obesity. Nat Rev Endocrinol 11:653–661. https://doi.org/10.1038/nrendo.2015.163

    CAS  Article  Google Scholar 

  67. Heo J, Joseph L, Yoon Y et al (2011) Removal of micropollutants and NOM in carbon nanotube-UF membrane system from seawater. Water Sci Technol 63:2737–2744. https://doi.org/10.2166/wst.2011.602

    CAS  Article  Google Scholar 

  68. Heo J, Yoon Y, Lee G et al (2019) Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour Technol 281:179–187. https://doi.org/10.1016/j.biortech.2019.02.091

    CAS  Article  Google Scholar 

  69. Heo J, Kim S, Her N et al (2020) Removal of contaminants of emerging concern by FO, RO, and UF membranes in water and wastewater. Elsevier, Amsterdam

    Book  Google Scholar 

  70. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340

    CAS  Article  Google Scholar 

  71. Ho L, Grasset C, Hoefel D et al (2011) Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Res 45:3461–3472. https://doi.org/10.1016/j.watres.2011.04.005

    CAS  Article  Google Scholar 

  72. Hu Z, Si X, Zhang Z, Wen X (2014) Enhanced EDCs removal by membrane fouling during the UF process. Desalination 336:18–23. https://doi.org/10.1016/j.desal.2013.12.027

    CAS  Article  Google Scholar 

  73. Ifelebuegu AO, Ukpebor JE, Obidiegwu CC, Kwofi BC (2015) Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution. Glob J Environ Sci Manag 1:205–214. https://doi.org/10.7508/gjesm.2015.03.003

    CAS  Article  Google Scholar 

  74. Iftekhar S, Ramasamy DL, Srivastava V et al (2018) Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review. Chemosphere 204:413–430. https://doi.org/10.1016/j.chemosphere.2018.04.053

    CAS  Article  Google Scholar 

  75. Janicki T, Krupiński M, Długoński J (2016) Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina. Bioresour Technol 200:223–229. https://doi.org/10.1016/j.biortech.2015.10.034

    CAS  Article  Google Scholar 

  76. Ji L, Chen W, Xu Z et al (2013) Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution. J Environ Qual 42:191–198. https://doi.org/10.2134/jeq2012.0172

    CAS  Article  Google Scholar 

  77. Jiang LH, Liu YG, Zeng GM et al (2016) Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: external influence and adsorption mechanism. Chem Eng J 284:93–102. https://doi.org/10.1016/j.cej.2015.08.139

    CAS  Article  Google Scholar 

  78. Jin X, Shan J, Wang C et al (2012) Rejection of pharmaceuticals by forward osmosis membranes. J Hazard Mater 227–228:55–61. https://doi.org/10.1016/j.jhazmat.2012.04.077

    Article  CAS  Google Scholar 

  79. Johnson AC, Sumpter JP (2001) Critical review removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703. https://doi.org/10.1021/es010171j

    CAS  Article  Google Scholar 

  80. Jun BM, Hwang HS, Heo J et al (2019) Removal of selected endocrine-disrupting compounds using Al-based metal organic framework: performance and mechanism of competitive adsorption. J Ind Eng Chem 79:345–352. https://doi.org/10.1016/j.jiec.2019.07.009

    CAS  Article  Google Scholar 

  81. Kamaz M, Wickramasinghe SR, Eswaranandam S et al (2019) Investigation into micropollutant removal from wastewaters by a membrane bioreactor. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16081363

    Article  Google Scholar 

  82. Karthikeyan S, Judia Magthalin C, Mahesh M et al (2015) Synthesis of reactive iron impregnated nanoporous activated carbon and its application in anaerobic biological treatment to enhance biodegradability of ortho-phenylenediamine. J Chem Technol Biotechnol 90:1013–1026. https://doi.org/10.1002/jctb.4403

    CAS  Article  Google Scholar 

  83. Kasonga TK, Coetzee MAA, Van Zijl C, Momba MNB (2019) Removal of pharmaceutical’ estrogenic activity of sequencing batch reactor effluents assessed in the T47D-KBluc reporter gene assay. J Environ Manag 240:209–218. https://doi.org/10.1016/j.jenvman.2019.03.113

    CAS  Article  Google Scholar 

  84. Khan S, Achazhiyath Edathil A, Banat F (2019) Sustainable synthesis of graphene-based adsorbent using date syrup. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-54597-x

    CAS  Article  Google Scholar 

  85. Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17:429–438

    CAS  Article  Google Scholar 

  86. Krupadam RJ, Sridevi P, Sakunthala S (2011) Removal of endocrine disrupting chemicals from contaminated industrial groundwater using chitin as a biosorbent. J Chem Technol Biotechnol 86:367–374. https://doi.org/10.1002/jctb.2525

    CAS  Article  Google Scholar 

  87. Kumar AK, Mohan SV (2011) Endocrine disruptive synthetic estrogen (17α-ethynylestradiol) removal from aqueous phase through batch and column sorption studies: mechanistic and kinetic analysis. Desalination 276:66–74. https://doi.org/10.1016/j.desal.2011.03.022

    CAS  Article  Google Scholar 

  88. Lagergren S (1898) Zur theorie Der Sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. K Suensk Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  89. Lang W, Dejma C, Sirisansaneeyakul S, Sakairi N (2009) Biosorption of nonylphenol on dead biomass of Rhizopus arrhizus encapsulated in chitosan beads. Bioresour Technol 100:5616–5623. https://doi.org/10.1016/j.biortech.2009.06.021

    CAS  Article  Google Scholar 

  90. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Article  Google Scholar 

  91. Lee JH, Kwak SY (2020) Branched polyethylenimine-polyethylene glycol-β-cyclodextrin polymers for efficient removal of bisphenol A and copper from wastewater. J Appl Polym Sci 137:1–9. https://doi.org/10.1002/app.48475

    CAS  Article  Google Scholar 

  92. Li YH, Zhao YM, Hu WB et al (2007) Carbon nanotubes—the promising adsorbent in wastewater treatment. J Phys: Conf Ser 61:698–702. https://doi.org/10.1088/1742-6596/61/1/140

    CAS  Article  Google Scholar 

  93. Li Y, Chai Q, Li J et al (2019) Adsorption of bisphenol a (BPA) from aqueous solution onto mesoporous carbon and Fe-modified mesoporous carbon. Desalin Water Treat 150:237–251. https://doi.org/10.5004/dwt.2019.23685

    CAS  Article  Google Scholar 

  94. Li C, Wei Y, Zhang S, Tan W (2020a) Advanced methods to analyze steroid estrogens in environmental samples. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00961-2

    Article  Google Scholar 

  95. Li G, Zhang X, Sun J et al (2020b) Effective removal of bisphenols from aqueous solution with magnetic hierarchical rattle-like Co/Ni-based LDH. J Hazard Mater 381:120985. https://doi.org/10.1016/j.jhazmat.2019.120985

    CAS  Article  Google Scholar 

  96. Limousin G, Gaudet JP, Charlet L et al (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010

    CAS  Article  Google Scholar 

  97. Liu YS, Ying GG, Shareef A, Kookana RS (2011) Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res 45:5005–5014. https://doi.org/10.1016/j.watres.2011.07.001

    CAS  Article  Google Scholar 

  98. Liu W, Song X, Huda N et al (2020) Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environ Technol Innov 17:100564. https://doi.org/10.1016/j.eti.2019.100564

    Article  Google Scholar 

  99. Louvado A, Gomes NCM, Simões MMQ et al (2015) Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment. Sci Total Environ 526:312–328

    CAS  Article  Google Scholar 

  100. Lu J, Zhang C, Wu J, Luo Y (2017) Adsorptive removal of bisphenol A using N-doped biochar made of Ulva prolifera. Water Air Soil Pollut 228:1–9. https://doi.org/10.1007/s11270-017-3516-0

    CAS  Article  Google Scholar 

  101. Lust MJ, Ziels RM, Strand SE et al (2015) Biodegradation kinetics of 17α-ethinylestradiol in activated sludge treatment processes. Environ Eng Sci 32:637–646. https://doi.org/10.1089/ees.2014.0467

    CAS  Article  Google Scholar 

  102. Macedo CC, de Andrade JR, da Silva MGC, Vieira MGA (2020) Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. Environ Sci Pollut Res 28:1–13. https://doi.org/10.1007/s11356-020-08109-4

    CAS  Article  Google Scholar 

  103. Maia GS, de Andrade JR, Oliveira MF, Vieira MGA, da Silva MGC (2017) Affinity studies between drugs and clays as adsorbent material. Chem Eng Trans 57:583–588. https://doi.org/10.3303/CET1757098

    Article  Google Scholar 

  104. Maia GS, de Andrade JR, da Silva MGC, Vieira MGA (2019) Adsorption of diclofenac sodium onto commercial organoclay: kinetic, equilibrium and thermodynamic study. Powder Technol 345:140–150. https://doi.org/10.1016/j.powtec.2018.12.097

    CAS  Article  Google Scholar 

  105. Manzotti F, Souza D, Machi A, Gurgel M (2018) Kinetic, equilibrium, and thermodynamic study on atrazine adsorption in organophilic clay. Desalin Water Treat 123:240–252. https://doi.org/10.5004/dwt.2018.22767

    CAS  Article  Google Scholar 

  106. Md Yusoff M, Yahaya N, Md Saleh N, Raoov M (2018) A study on the removal of propyl, butyl, and benzyl parabens: via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Adv 8:25617–25635. https://doi.org/10.1039/c8ra03408g

    CAS  Article  Google Scholar 

  107. Melo-Guimarães A, Torner-Morales FJ, Durán-Álvarez JC, Jiménez-Cisneros BE (2013) Removal and fate of emerging contaminants combining biological, flocculation and membrane treatments. Water Sci Technol 67:877–885. https://doi.org/10.2166/wst.2012.640

    CAS  Article  Google Scholar 

  108. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17:1667–1692

    CAS  Article  Google Scholar 

  109. Morsi RE, Mohamed RS (2018) Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. R Soc Open Sci. https://doi.org/10.1098/rsos.172021

    Article  Google Scholar 

  110. Mukherjee S (2019) Isolation and purification of industrial enzymes: advances in enzyme technology. Elsevier, Amsterdam

    Google Scholar 

  111. Muz M, Ak S, Komesli OT, Gokcay CF (2014) Removal of endocrine disrupting compounds in a lab-scale anaerobic/aerobic sequencing batch reactor unit. Environ Technol U K 35:1055–1063. https://doi.org/10.1080/09593330.2013.861020

    CAS  Article  Google Scholar 

  112. Nadal A, Quesada I, Tudurí E et al (2017) Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 13:536–546. https://doi.org/10.1038/nrendo.2017.51

    CAS  Article  Google Scholar 

  113. Nagy E (2019) Forward osmosis. Basic Equ Mass Transp Membr Layer. https://doi.org/10.1016/b978-0-12-813722-2.00017-0

    Article  Google Scholar 

  114. Ndagijimana P, Liu X, Li Z et al (2019) Optimized synthesis of a core-shell structure activated carbon and its adsorption performance for bisphenol A. Sci Total Environ 689:457–468. https://doi.org/10.1016/j.scitotenv.2019.06.235

    CAS  Article  Google Scholar 

  115. NIH Endocrine Disruptors (2020) In: The national institute of environmental health sciences. https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm. Accessed 3 Mar 2020

  116. Ojajuni O, Saroj D, Cavalli G (2015) Removal of organic micropollutants using membrane-assisted processes: a review of recent progress. Environ Technol Rev 4:17–37. https://doi.org/10.1080/21622515.2015.1036788

    CAS  Article  Google Scholar 

  117. Okonkwo JO, Sibali LL, McCrindle R, Senwo ZN (2007) An improved activated carbon method to quantify dichlorodiphenyltrichloroethane (DDT) in surface water. Environ Chem Lett 5:121–123. https://doi.org/10.1007/s10311-006-0089-3

    CAS  Article  Google Scholar 

  118. Oliveira MF, De Souza VM, Da Silva MGC, Vieira MGA (2018) Fixed-bed adsorption of caffeine onto thermally modified Verde-lodo bentonite. Ind Eng Chem Res 57:17480–17487. https://doi.org/10.1021/acs.iecr.8b03734

    CAS  Article  Google Scholar 

  119. Oliveira MF, da Silva MGC, Vieira MGA (2019) Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified Verde-lodo bentonite. Appl Clay Sci 168:366–373. https://doi.org/10.1016/j.clay.2018.12.011

    CAS  Article  Google Scholar 

  120. Özer ET, Osman B, Kara A et al (2015) Diethyl phthalate removal from aqueous phase using poly(EGDMA-MATrp) beads: kinetic, isothermal and thermodynamic studies. Environ Technol U K 36:1698–1706. https://doi.org/10.1080/09593330.2015.1006687

    CAS  Article  Google Scholar 

  121. Pan B, Pan B, Zhang W et al (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29. https://doi.org/10.1016/j.cej.2009.02.036

    CAS  Article  Google Scholar 

  122. Pan X, Yan L, Li C et al (2017) Degradation of UV-filter benzophenone-3 in aqueous solution using persulfate catalyzed by cobalt ferrite. Chem Eng J 326:1197–1209. https://doi.org/10.1016/j.cej.2017.06.068

    CAS  Article  Google Scholar 

  123. Pandey P, Saini VK (2019) Pillared interlayered clays: sustainable materials for pollution abatement. Environ Chem Lett 17:721–727

    CAS  Article  Google Scholar 

  124. Prasse C, Stalter D, Schulte-Oehlmann U et al (2015) Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res 87:237–270. https://doi.org/10.1016/j.watres.2015.09.023

    CAS  Article  Google Scholar 

  125. Qin L, Zhang Y, Xu Z, Zhang G (2018) Advanced membrane bioreactors systems: new materials and hybrid process design. Bioresour Technol 269:476–488. https://doi.org/10.1016/j.biortech.2018.08.062

    CAS  Article  Google Scholar 

  126. Rajendran RK, Huang SL, Lin CC, Kirschner R (2016) Aerobic degradation of estrogenic alkylphenols by yeasts isolated from a sewage treatment plant. RSC Adv 6:82862–82871. https://doi.org/10.1039/c6ra08839b

    CAS  Article  Google Scholar 

  127. Rajendran RK, Huang SL, Lin CC, Kirschner R (2017) Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresour Technol 226:55–64. https://doi.org/10.1016/j.biortech.2016.11.129

    CAS  Article  Google Scholar 

  128. Ramachandra SR (2006) Emerging new technologies. In: Waste management series, pp 483–508

  129. Rana D, Narbaitz RM, Garand-Sheridan AM et al (2014) Development of novel charged surface modifying macromolecule blended PES membranes to remove EDCs and PPCPs from drinking water sources. J Mater Chem A 2:10059–10072. https://doi.org/10.1039/c4ta01530d

    CAS  Article  Google Scholar 

  130. Rastogi NK, Cassano A, Basile A (2015) Water treatment by reverse and forward osmosis. Elsevier, Amsterdam

    Book  Google Scholar 

  131. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410. https://doi.org/10.1016/j.cej.2010.08.045

    CAS  Article  Google Scholar 

  132. Rodriguez-narvaez OM, Peralta-hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng J 323:361–380. https://doi.org/10.1016/j.cej.2017.04.106

    CAS  Article  Google Scholar 

  133. Rossner A, Snyder SA, Knappe DRU (2009) Removal of emerging contaminants of concern by alternative adsorbents. Water Res 43:3787–3796. https://doi.org/10.1016/j.watres.2009.06.009

    CAS  Article  Google Scholar 

  134. Ruchiraset A, Chinwetkitvanich S (2014) Occurrence of estrogens in wastewater treatment plants and surface water in Bangkok area, Thailand. Adv Mater Res 931–932:721–726. https://doi.org/10.4028/www.scientific.net/AMR.931-932.721

    CAS  Article  Google Scholar 

  135. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  136. Sahu O, Singh N (2019) Significance of bioadsorption process on textile industry wastewater. Elsevier, Amsterdam

    Book  Google Scholar 

  137. Saleh TA, Gupta VK (2016) Application of nanomaterial-polymer membranes for water and wastewater purification. In: Nanomaterial and polymer membranes, pp 233–250

  138. Sanches S, Penetra A, Rodrigues A et al (2012) Nanofiltration of hormones and pesticides in different real drinking water sources. Sep Purif Technol 94:44–53. https://doi.org/10.1016/j.seppur.2012.04.003

    CAS  Article  Google Scholar 

  139. Schmidt N, Page D, Tiehm A (2017) Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors. J Contam Hydrol 203:62–69. https://doi.org/10.1016/j.jconhyd.2017.06.007

    CAS  Article  Google Scholar 

  140. Sharma VK, Anquandah GAK, Nesnas N (2009) Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate(VI). Environ Chem Lett 7:115–119. https://doi.org/10.1007/s10311-008-0143-4

    CAS  Article  Google Scholar 

  141. Si X, Hu Z, Huang S (2018) Combined process of ozone oxidation and ultrafiltration as an effective treatment technology for the removal of endocrine-disrupting chemicals. Appl Sci. https://doi.org/10.3390/app8081240

    Article  Google Scholar 

  142. Singh R (2015) Introduction to membrane technology. Membr Technol Eng Water Purif. https://doi.org/10.1016/B978-1-85617-442-8.50002-6

    Article  Google Scholar 

  143. Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    CAS  Article  Google Scholar 

  144. Siyal AA, Shamsuddin MR, Low A, Rabat NE (2020) A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manag 254:109797. https://doi.org/10.1016/j.jenvman.2019.109797

    CAS  Article  Google Scholar 

  145. Stick RV, Williams SJ (2009) Disaccharides, oligosaccharides and polysaccharides. Carbohydr Essent Mol Life. https://doi.org/10.1016/b978-0-240-52118-3.00009-0

    Article  Google Scholar 

  146. Styring P, Capture C (2015) Carbon capture. Elsevier, Amsterdam

    Google Scholar 

  147. Sudha PN, Aisverya S, Gomathi T et al (2017) Application of chitin/chitosan and its derivatives as adsorbents, coagulants, and flocculants. Chitosan-deerivatives, composites and application. Scrivener Publishing LLC, Wiley, pp 453–487. https://doi.org/10.1002/9781119364849.ch17

  148. Sudhakar P, Mall ID, Srivastava VC (2016) Adsorptive removal of bisphenol-A by rice husk ash and granular activated carbon—a comparative study. Desalin Water Treat 57:12375–12384. https://doi.org/10.1080/19443994.2015.1050700

    CAS  Article  Google Scholar 

  149. Tadkaew N, Hai FI, McDonald JA et al (2011) Removal of trace organics by MBR treatment: the role of molecular properties. Water Res 45:2439–2451. https://doi.org/10.1016/j.watres.2011.01.023

    CAS  Article  Google Scholar 

  150. Tasmia SJ, Jan MR (2020) Eco-friendly alginate encapsulated magnetic graphene oxide beads for solid phase microextraction of endocrine disrupting compounds from water samples. Ecotoxicol Environ Saf 190:110099. https://doi.org/10.1016/j.ecoenv.2019.110099

    CAS  Article  Google Scholar 

  151. Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta USSR 12:327–356

    CAS  Google Scholar 

  152. Thongkon N (2017) Study on the influence of cationic surfactant on the adsorption of nonylphenol polyethoxylate using KOH-treated fish scales of Barbonymus gonionotus. J Environ Chem Eng 5:709–715. https://doi.org/10.1016/j.jece.2016.12.038

    CAS  Article  Google Scholar 

  153. Tijani JO, Fatoba OO, Babajide OO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14:27–49. https://doi.org/10.1007/s10311-015-0537-z

    CAS  Article  Google Scholar 

  154. Tong Y, McNamara PJ, Mayer BK (2019) Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium. Environ Sci Water Res Technol 5:821–838. https://doi.org/10.1039/c8ew00938d

    CAS  Article  Google Scholar 

  155. Toyama T, Murashita M, Kobayashi K et al (2011) Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 45:6524–6530. https://doi.org/10.1021/es201061a

    CAS  Article  Google Scholar 

  156. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    CAS  Article  Google Scholar 

  157. Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G (2011) Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res 45:6737–6744. https://doi.org/10.1016/j.watres.2011.10.037

    CAS  Article  Google Scholar 

  158. Vásquez E, Trapote A, Prats D (2018) Elimination of pesticides with a membrane bioreactor and two different sludge retention times. Tecnol y Ciencias del Agua 9:198–212. https://doi.org/10.24850/j-tyca-2018-05-08

    Article  Google Scholar 

  159. Vona A, di Martino F, Garcia-Ivars J et al (2015) Comparison of different removal techniques for selected pharmaceuticals. J Water Process Eng 5:48–57. https://doi.org/10.1016/j.jwpe.2014.12.011

    Article  Google Scholar 

  160. Wang Y, Rao G, Hu J (2011) Adsorption of EDCs/PPCPs from drinking water by submicron-sized powdered activated carbon. Water Sci Technol Water Supply 11:711. https://doi.org/10.2166/ws.2011.099

    CAS  Article  Google Scholar 

  161. Wang M, Qu F, Jia R et al (2016) Preliminary study on the removal of steroidal estrogens using TiO2-doped PVDF ultrafiltration membranes. Water Switz 8:1–12. https://doi.org/10.3390/w8040134

    CAS  Article  Google Scholar 

  162. Wang X, Liu N, Liu Y et al (2017) Adsorption removal of 17β-estradiol from water by rice straw-derived biochar with special attention to pyrolysis temperature and background chemistry. Int J Environ Res Public Health 14:1–17. https://doi.org/10.3390/ijerph14101213

    CAS  Article  Google Scholar 

  163. Weber W, Morris J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div ASCE 89:31–60

    Google Scholar 

  164. Yan B, Luo L, Yang H (2019) Isolation and characterization of Aeromonas sp. TXBc10 capable of high-efficiency degradation of octylphenol polyethoxylate from tannery wastewater. Environ Technol. https://doi.org/10.1080/09593330.2019.1619842

    Article  Google Scholar 

  165. Yangali-Quintanilla V, Maeng SK, Fujioka T et al (2010) Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J Membr Sci 362:334–345. https://doi.org/10.1016/j.memsci.2010.06.058

    CAS  Article  Google Scholar 

  166. Youcai Z (2018) Leachate treatment engineering processes. In: Pollution control technology for leachate from municipal solid waste, pp 365–522

  167. Yüksel S, Kabay N, Yüksel M (2013) Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J Hazard Mater 263:307–310. https://doi.org/10.1016/j.jhazmat.2013.05.020

    CAS  Article  Google Scholar 

  168. Zearley TL, Summers RS (2012) Removal of trace organic micropollutants by drinking water biological filters. Environ Sci Technol 46:9412–9419. https://doi.org/10.1021/es301428e

    CAS  Article  Google Scholar 

  169. Zhang W, Li Y, Mao K, Li G (2012) Removal of endocrine disrupting compounds and estrogenic activity from secondary effluents during TiO2 photocatalysis. Fresenius Environ Bull 21:731–735

    CAS  Google Scholar 

  170. Zhang L, Lv J, Xu T et al (2013) High efficiency removal and recovery of an endocrine disrupting compound-bisphenol AF from wastewaters. Sep Purif Technol 116:145–153. https://doi.org/10.1016/j.seppur.2013.05.036

    CAS  Article  Google Scholar 

  171. Zhang J, Nguyen MN, Li Y et al (2020) Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122020

    Article  Google Scholar 

  172. Zhao Y, Cho CW, Cui L et al (2019) Adsorptive removal of endocrine-disrupting compounds and a pharmaceutical using activated charcoal from aqueous solution: kinetics, equilibrium, and mechanism studies. Environ Sci Pollut Res 26:33897–33905. https://doi.org/10.1007/s11356-018-2617-7

    CAS  Article  Google Scholar 

  173. Zhou X, Zhou J, Liu Y et al (2019) Adsorption of endocrine disrupting ethylparaben from aqueous solution by chemically activated biochar developed from oil palm fibre. Sep Sci Technol 54:683–695. https://doi.org/10.1080/01496395.2018.1520723

    CAS  Article  Google Scholar 

  174. Zielinska M, Cydzik-Kwiatkowska A, Bulkowska K et al (2017) Treatment of bisphenol a-containing effluents from aerobic granular sludge reactors with the use of microfiltration and ultrafiltration ceramic membranes. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3450-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Proc. 2017/18236-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (406193/2018-5), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meuris Gurgel Carlos da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vieira, W.T., de Farias, M.B., Spaolonzi, M.P. et al. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ Chem Lett 18, 1113–1143 (2020). https://doi.org/10.1007/s10311-020-01000-1

Download citation

Keywords

  • Emerging contaminants
  • Endocrine disrupting compounds
  • Water and wastewater
  • Treatment processes