Skip to main content
Log in

Influence of low molecular weight anionic ligands on the sorption of heavy metals by soil constituents: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The sorption of heavy metals by soil constituents reduces the absorption of these pollutants by crops and vegetables, and thus limit food contamination. Low molecular weight anionic ligands are ubiquitous in soil and they influence the sorption of heavy metals. Here we review the influence of small anionic ligands on the sorption of heavy metals by soil constituents. We discuss the mechanisms of anionic ligand impact on heavy metal sorption by soil constituents; the influence of anionic ligands on heavy metal sorption by composites of soil constituents; and (4) the influence of mixed anionic ligands on heavy metal sorption. The information in this review will facilitate the assessment and control of heavy metal pollution in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite: effect of pH and organic substances. Water Res 37:1619–1627

    Article  CAS  Google Scholar 

  • Ali MA, Dzombak DA (1996a) Effects of simple organic acids on sorption of Cu2+ and Ca2+ on goethite. Geochim Cosmochim Acta 60:291–304

    Article  CAS  Google Scholar 

  • Ali MA, Dzombak DA (1996b) Interactions of copper, organic acids, and sulfate in goethite suspensions. Geochim Cosmochim Acta 60:5045–5053

    Article  CAS  Google Scholar 

  • Alvarez-Puebla RA, Valenzuela-Calahorro C, Carrido JJ (2004) Retention of Co(II), Ni(II), and Cu(II) on a purified brown humic acid. Modeling and characterization of the sorption process. Langmuir 20:3657–3664

    Article  CAS  Google Scholar 

  • An CJ, Huang GH, Wei J, Yu H (2011) Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res 45:5501–5510

    Article  CAS  Google Scholar 

  • Angove MJ, Wells JD, Johnson BB (1999) Adsorption of cadmium(II) onto goethite and kaolinite in the presence of benzene carboxylic acids. Colloids Surf A 146:243–251

    Article  CAS  Google Scholar 

  • Avery SV, Tobin JM (1993) Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl Environ Microbiol 59:2851–2856

    CAS  Google Scholar 

  • Benyahya L, Garnier JM (1999) Effect of salicylic acid upon trace-metal sorption (CdII, ZnII, CoII, and MnII) onto alumina, silica, and kaolinite as a function of pH. Environ Sci Technol 33:1398–1407

    Article  CAS  Google Scholar 

  • Boily JF, Fein JB (1996) Experimental study of cadmium-citrate co-adsorption onto α-Al2O3. Geochim Cosmochim Acta 60:2929–2938

    Article  CAS  Google Scholar 

  • Boily JF, Fein JB (1998) Adsorption of Pb(II) and benzenecarboxylates onto corundum. Chem Geol 148:157–175

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Cai P, Huang Q, Zhang X (2006) Microcalorimetric studies of the effects of MgCl2 concentrations and pH on the adsorption of DNA on montmorillonite, kaolinite and goethite. Appl Clay Sci 32:147–152

    Article  CAS  Google Scholar 

  • Collins CR, Ragnarsdottir KV, Sherman DM (1999) Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochim Cosmochim Acta 63:2989–3002

    Article  CAS  Google Scholar 

  • Daughney CJ, Fein JB, Yee N (1998) A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chem Geol 144:161–176

    Article  CAS  Google Scholar 

  • Du HH, Chen WL, Cai P, Rong XM, Chen CR, Huang QY (2016) Cadmium adsorption on bacteria—mineral mixtures: effect of naturally occurring ligands. Eur J Soil Sci 67:641–649

    Article  CAS  Google Scholar 

  • Duman O, Tunc S (2008) Electrokinetic properties of vermiculite and expanded vermiculite: effects of pH, clay concentration and mono- and multivalent electrolytes. Sep Sci Technol 43:3755–3776

    Article  CAS  Google Scholar 

  • Duman O, Tunc S, Cetinkaya A (2012) Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids Surf A 394:23–32

    Article  CAS  Google Scholar 

  • Elzinga EJ, Kretzschmar R (2013) In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite. Geochim Cosmochim Acta 117:53–64

    Article  CAS  Google Scholar 

  • Elzinga EJ, Peak D, Sparks DL (2001) Spectroscopic studies of Pb(II)-sulfate interactions at the goethite-water interface. Geochim Cosmochim Acta 65:2219–2230

    Article  CAS  Google Scholar 

  • Erdemoğlu M, Sarıkaya M (2006) Effects of heavy metals and oxalate on the zeta potential of magnetite. J Colloid Interface Sci 300:795–804

    Article  CAS  Google Scholar 

  • Evans N, Warwick P, Lewis T, Bryan N (2011) Influence of humic acid on the sorption of uranium (IV) to kaolin. Environ Chem Lett 9:25–30

    Article  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  • Flynn ED, Catalano JG (2017) Competitive and cooperative effects during nickel adsorption to iron oxides in the presence of oxalate. Environ Sci Technol 51:9792–9799

    Article  CAS  Google Scholar 

  • Glover LJ II, Eick MJ, Brady PV (2002) Desorption kinetics of cadmium2+ and lead2+ from goethite: influence of time and organic acids. Soil Sci Soc Am J 66:797–804

    Article  CAS  Google Scholar 

  • Gu C, Wang Z, Kubicki JD, Wang X, Zhu M (2016) X-ray absorption spectroscopic quantification and speciation modeling of sulfate adsorption on ferrihydrite surfaces. Environ Sci Technol 50:8067–8076

    Article  CAS  Google Scholar 

  • Ha J, Trainor TP, Farges F, Brown GE Jr (2009) Interaction of Zn(II) with hematite nanoparticles and microparticles: part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system. Langmuir 25:5586–5593

    Article  CAS  Google Scholar 

  • Huang PM, Wang MK, Chiu CY (2005) Soil mineral-organic matter-microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia 49:609–635

    Article  CAS  Google Scholar 

  • Huang L, Hu H, Li X, Li LY (2010) Influence of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite. Appl Clay Sci 49:281–287

    Article  CAS  Google Scholar 

  • Hwang YS, Lenhart JJ (2008) Adsorption of C4-dicarboxylic acids at the hematite/water interface. Langmuir 24:13934–13943

    Article  CAS  Google Scholar 

  • Ioannou A, Dimirkou A (1997) Phosphate adsorption on hematite, kaolinite, and kaolinite–hematite (k–h) systems as described by a constant capacitance model. J Colloid Interface Sci 192:119–128

    Article  CAS  Google Scholar 

  • Juang RS, Chung JY (2004) Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite. J Colloid Interface Sci 275:53–60

    Article  CAS  Google Scholar 

  • Juang RS, Wu WL (2002) Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. J Colloid Interface Sci 249:22–29

    Article  CAS  Google Scholar 

  • Kang S, Xing B (2007) Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Langmuir 23:7024–7031

    Article  CAS  Google Scholar 

  • Kim J, Li W, Philips BL, Grey CP (2011) Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR study. Energy Environ Sci 4:4298–4305

    Article  CAS  Google Scholar 

  • Lackovic K, Angove MJ, Wells JD, Johnson BB (2004a) Modelling the adsorption of Cd(II) onto goethite in the presence of citric acid. J Colloid Interface Sci 269:37–45

    Article  CAS  Google Scholar 

  • Lackovic K, Wells JD, Johnson BB, Angove MJ (2004b) Modeling the adsorption of Cd(II) onto kaolinite and muloorina illite in the presence of citric acid. J Colloid Interface Sci 270:86–93

    Article  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Lee SO, Tran T, Jung BH, Kim SJ, Kim MJ (2007) Dissolution of iron oxide using oxalic acid. Hydrometallurgy 87:91–99

    Article  CAS  Google Scholar 

  • Lenhart JJ, Bargar JR, Davis JA (2001) Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system. J Colloid Interface Sci 234:448–452

    Article  CAS  Google Scholar 

  • Li W, Zhang S, Jiang W, Shan XQ (2006) Effect of phosphate on the adsorption of Cu and Cd on natural hematite. Chemosphere 63:1235–1241

    Article  CAS  Google Scholar 

  • Li W, Zhang S, Shan XQ (2007) Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption. Colloids Surf A 293:13–19

    Article  CAS  Google Scholar 

  • Lin SH, Kao HC, Cheng CH, Juang RS (2004) An EXAFS study of the structure of copper and phosphate sorbed onto goethite. Colloids Surf A 234:71–75

    Article  CAS  Google Scholar 

  • Liu J, Zhu R, Xu T, Xu Y, Ge F, Xi Y, Zhu J, He H (2016) Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere 144:1148–1155

    Article  CAS  Google Scholar 

  • Liu J, Zhu R, Liang X, Ma L, Lin X, Zhu J, He H, Parker SC, Molinari M (2018) Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study. Chem Geol 477:12–21

    Article  CAS  Google Scholar 

  • Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Nickel sorption to goethite and montmorillonite in presence of citrate. Environ Sci Technol 43:1122–1127

    Article  CAS  Google Scholar 

  • Morton JD, Semrau JD, Hayes KF (2001) An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochim Cosmochim Acta 65:2709–2722

    Article  CAS  Google Scholar 

  • Ngwenya BT, Sutherland IW, Kennedy L (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl Geochem 18:527–538

    Article  CAS  Google Scholar 

  • Olu-Owolabi BI, Unuabonah EI (2010) Kinetic and thermodynamics of the removal of Zn2+ and Cu2+ from aqueous solution by sulphate and phosphate-modified bentonite clay. J Hazard Mater 184:731–738

    Article  CAS  Google Scholar 

  • Ostergren JD, Brown GE Jr, Parks GA, Persson P (2000a) Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH) II. Sulfate. J Colloid Interface Sci 225:483–493

    Article  CAS  Google Scholar 

  • Ostergren JD, Trainor TP, Bargar JR, Brown GE Jr, Parks GA (2000b) Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH) I. Carbonate. J Colloid Interface Sci 225:466–482

    Article  CAS  Google Scholar 

  • Peacock CL, Sherman DM (2005) Surface complexation model for multisite adsorption of copper(II) onto kaolinite. Geochim Cosmochim Acta 69:3733–3745

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter Strain MCM B-181: characterization studies. Biotechnol Progr 15:228–237

    Article  CAS  Google Scholar 

  • Ren X, Yang S, Tan X, Chen C, Sheng G, Wang X (2012) Mutual effects of copper and phosphate on their interaction with γ-Al2O3: combined batch macroscopic experiments with DFT calculations. J Hazard Mater 237–238:199–208

    Article  CAS  Google Scholar 

  • Ren X, Tan X, Hayat T, Alsaedi A, Wang X (2015) Co-sequestration of Zn(II) and phosphate by γ-Al2O3: from macroscopic to microscopic investigation. J Hazard Mater 297:134–145

    Article  CAS  Google Scholar 

  • Senesi N, Loffredo E (2008) Spectroscopic techniques for studying metal-humic substance complexes in soil: an overview. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, New York, pp 125–168

    Google Scholar 

  • Shuttleworth KL, Unz RF (1993) Sorption of heavy metals to the filamentous bacterium Thiothrix Strain A1. Appl Environ Microb 59:1274–1282

    CAS  Google Scholar 

  • Song Y, Swedlund PJ, Singhal N (2008) Copper(II) and cadmium (II) sorption onto ferrihydrite in the presence of phthalic acid: some properties of the ternary complex. Environ Sci Technol 42:4008–4013

    Article  CAS  Google Scholar 

  • Song Y, Swedlund PJ, Singhal N, Swift S (2009) Cadmium(II) speciation in complex aquatic systems: a study with ferrihydrite, bacteria, and an organic ligand. Environ Sci Technol 43:7430–7436

    Article  CAS  Google Scholar 

  • Sparks DL (2002) Environmental soil chemistry. Academic Press, New York

    Google Scholar 

  • Stietiya MH, Wang JJ (2014) Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Qual 43:498–506

    Article  CAS  Google Scholar 

  • Stietiya MH, Wang JJ, Roy A (2011) Macroscopic and extended x-ray absorption fine structure spectroscopic investigation of ligand effect on zinc absorption to kaolinite as a function of pH. Soil Sci 176:464–471

    Article  CAS  Google Scholar 

  • Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257–269

    Article  CAS  Google Scholar 

  • Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503–511

    Article  CAS  Google Scholar 

  • Swedlund PJ, Webster JG, Miskelly GM (2003) The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd: ternary complexes and site heterogeneity. Appl Geochem 18:1671–1689

    Article  CAS  Google Scholar 

  • Swedlund PJ, Webster JG, Miskelly GM (2009) Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: properties of the ternary complex. Geochim Cosmochim Acta 73:1548–1562

    Article  CAS  Google Scholar 

  • Taylor RW, Bleam WF, Ranatunga TD, Schulthess CP, Senwo ZN, Ranatunga DRA (2009) X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite. Environ Sci Technol 43:711–717

    Article  CAS  Google Scholar 

  • Tiberg C, Gustafsson JP (2016) Phosphate effects on cadmium(II) sorption to ferrihydrite. J Colloid Interface Sci 471:103–111

    Article  CAS  Google Scholar 

  • Tiberg C, Sjostedt C, Persson I, Gustafsson JP (2013) Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite. Geochim Cosmochim Acta 120:140–157

    Article  CAS  Google Scholar 

  • Tombácz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124

    Article  CAS  Google Scholar 

  • Tunc S, Duman O (2008) The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloids Surf A 317:93–99

    Article  CAS  Google Scholar 

  • Tunc S, Duman O (2009) Effects of electrolytes on the electrokinetic properties of pumice suspensions. J Dispers Sci Technol 30:548–555

    Article  CAS  Google Scholar 

  • Tunc S, Duman O, Uysal R (2008) Electrokinetic and rheological behaviors of sepiolite suspensions in the presence of poly(acrylic acid sodium salt)s, polyacrylamides, and poly(ethylene glycol)s of different molecular weights. J Appl Polym Sci 109:1850–1860

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead(II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395

    Article  CAS  Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Oladoja AN, Ofomaja AE, Yang ZL (2010) Pb/Ca ion exchange on kaolinite clay modified with phosphates. J Soil Sediment 10:1103–1114

    Article  CAS  Google Scholar 

  • Van Emmerik TJ, Sandström DE, Antzutkin ON, Angove MJ, Johnson BB (2007) 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite. Langmuir 23:3205–3213

    Article  CAS  Google Scholar 

  • Venema P, Hiemstra T, van Riemsdijk WH (1997) Interaction of cadmium with phosphate on goethite. J Colloid Interface Sci 192:94–103

    Article  CAS  Google Scholar 

  • Violante A, Krishnamurti GSR, Huang PM (2002) Impact of organic substances on the formation of metal oxides in soil environments. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between soil particles and microorganism: impact on the terrestrial ecosystem. Wiley, New York, pp 133–188

    Google Scholar 

  • Violante A, Ricciardella M, Pigna M (2003) Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands. Water Air Soil Pollut 145:289–306

    Article  CAS  Google Scholar 

  • Wang K, Xing B (2002) Adsorption and desorption of cadmium by goethite pretreated with phosphate. Chemosphere 48:665–670

    Article  CAS  Google Scholar 

  • Wang K, Xing B (2004) Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite. Environ Pollut 127:13–20

    Article  CAS  Google Scholar 

  • Wang L, Putnis CV, Ruiz-Agudo E, Hövelmann J, Putnis A (2015) In situ imaging of interfacial precipitation of phosphate on goethite. Environ Sci Technol 49:4184–4192

    Article  CAS  Google Scholar 

  • Weesner FJ, Bleam WF (1998) Binding characteristics of Pb2+ on anion-modified and pristine hydrous oxide surfaces studied by electrophoretic mobility and X-ray absorption spectroscopy. J Colloid Interface Sci 205:380–389

    Article  CAS  Google Scholar 

  • Wu Z, Gu Z, Wang X, Evans L, Guo H (2003) Effects of organic acids on adsorption of lead onto montmorillonite, goethite and humic acid. Environ Pollut 121:469–475

    Article  CAS  Google Scholar 

  • Yamaguchi NU, Scheinost AC, Sparks DL (2001) Surface-induced nickel hydroxide precipitation in the presence of citrate and salicylate. Soil Sci Soc Am J 65:729–736

    Article  CAS  Google Scholar 

  • Yamaguchi NU, Scheinost AC, Sparks DL (2002) Influence of gibbsite surface area and citrate on Ni sorption mechanisms at pH 7.5. Clays Clay Miner 50:784–790

    Article  CAS  Google Scholar 

  • Yuan S, Xi Z, Jiang Y, Wan J, Wu C, Zheng Z, Lu X (2007) Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 68:1289–1297

    Article  CAS  Google Scholar 

  • Zaman MI, Mustafa S, Khan S, Xing B (2009) Effect of phosphate complexation on Cd2+ sorption by manganese dioxide. J Colloid Interface Sci 330:9–19

    Article  CAS  Google Scholar 

  • Zhang GY, Peak D (2007) Studies of Cd(II)-sulfate interactions at the goethite-water interface by ATR-FTIR spectroscopy. Geochim Cosmochim Acta 71:2158–2169

    Article  CAS  Google Scholar 

  • Zhu J, Cozzolino V, Fernandez M, Sánchez RMT, Pigna M, Huang Q, Violante A (2011) Sorption of Cu on a Fe-deformed montmorillonite complex: effect of pH, ionic strength, competitor heavy metal, inorganic and organic ligands. Appl Clay Sci 52:339–344

    Article  CAS  Google Scholar 

  • Zhu R, Li M, Ge F, Xu Y, Zhu J, He H (2014) Co-sorption of Cd and phosphate on the surface of a synthetic hydroxyiron-montmorillonite complex. Clay Clay Miner 62:79–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Youjun Deng (Texas A&M University, USA) for revising the manuscript. This research was supported by the Fundamental Research Funds for the Central Universities (Program Number: 2662017JC009) and National Key Research and Development Plan of China (2017YFD0801002, 2017YFD0801502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Fu, Q., Qiu, G. et al. Influence of low molecular weight anionic ligands on the sorption of heavy metals by soil constituents: a review. Environ Chem Lett 17, 1271–1280 (2019). https://doi.org/10.1007/s10311-019-00881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-019-00881-1

Keywords

Navigation