Skip to main content
Log in

Toxicity of environmental nanosilver: mechanism and assessment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanosilver (nAg) is increasingly being used in a wide array of fields, and its toxicity has been extensively studied. Here we present a review of environmental nAg cytotoxicity, as well toxicity mechanisms. The cytotoxicity is described in four aspects including cell membrane, the genome, the mitochondria and autophagy flux. Considering its broad-spectrum antibiotic effects, nAg ecotoxicity is described, in addition to an analysis of factors necessary in controlling its toxicity. We propose a toxicity assessment model with potential applications to living organisms, based on the antibacterial effects of nAg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Nanosilver:

Zero-valence in nano-size, including silver nanoparticle, silver nanorod, silver nanocube, and silver nanoplate

Cytotoxicity:

Toxicity to a specific cell

Ecotoxicity:

Toxicity to a biotic community

TCA cycle:

Tricarboxylic acid cycle, a series of enzyme-catalyzed chemical reactions of central importance in living cells to provide energy

Autophagy:

Self-degradation of cytoplasmic components including organelles

References

  • Abdelghany TM, Al-Rajhi AMH, Al Abboud MA et al (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoSci 8:5–16

    Article  Google Scholar 

  • Adegboyega NF, Sharma VK, Siskova KM et al (2014) Enhanced formation of silver nanoparticles in Ag+-NOM-Iron(II, III) systems and antibacterial activity studies. Environ Sci Technol 48:3228–3235

    Article  CAS  Google Scholar 

  • Akaighe N, MacCuspie RI, Navarro DA et al (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45:3895–3901

    Article  CAS  Google Scholar 

  • Akter M, Sikder MT, Rahman MM (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  Google Scholar 

  • Anna B, Barbara K, Magdalena O (2018) How the surface properties affect the nanocytotoxicity of silver? Study of the influence of three types of nanosilver on two wheat varieties. Acta Physiol Plant 40:31

    Article  CAS  Google Scholar 

  • Auffan M, Bottero JY, Chaneac C (2010) Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5:999–1007

    Article  CAS  Google Scholar 

  • Bacchetta R, Santo N, Valenti I (2018) Comparative toxicity of three differently shaped carbon nanomaterials on Daphnia magna: does a shape effect exist? Nanotoxicology 12:201–223

    Article  CAS  Google Scholar 

  • Belattmania Z, Bentiss F, Jama C et al (2018) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. BioNanoSci. https://doi.org/10.1007/s12668-018-0518-3

    Article  Google Scholar 

  • Bernhardt ES, Colman BP Jr, Hochella MF et al (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1–12

    Article  CAS  Google Scholar 

  • Bhaumik J, Thakur NS, Aili PK et al (2015) Bioinspired nanotheranostic agents: synthesis, surface functionalization, and antioxidant potential. ACS Biomater Sci Eng 1:382–392

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  • Chambers BA, Afrooz ARMN, Bae S et al (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48:761–769

    Article  CAS  Google Scholar 

  • Chen Y, Wang Z, Xu M (2014) Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 8:5813–5825

    Article  CAS  Google Scholar 

  • Chen Y, Xu M, Zhang J et al (2017) Genome-wide dna methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment. Adv Mater 29:1604580

    Article  CAS  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  CAS  Google Scholar 

  • Cho YM, Mizuta Y, Ji A et al (2018) Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 31:73–80

    Article  CAS  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S et al (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8:e57189

    Article  CAS  Google Scholar 

  • Colman BP, Espinasse B, Richardson CJ et al (2014) Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–5236

    Article  CAS  Google Scholar 

  • Conley SM, Abais JM, Boini KM (2017) Inflammasome activation in chronic glomerular diseases. Curr Drug Targets 18:1019–1029

    Article  CAS  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR et al (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46:9120–9128

    Article  CAS  Google Scholar 

  • De Matteis V, Malvindi MA, Galeone A et al (2015) Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomed Nanotechnol Biol Med 11:731–739

    Article  CAS  Google Scholar 

  • Eckhardt S, Brunetto PS, Gagnon J et al (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754

    Article  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B et al (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  CAS  Google Scholar 

  • Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342

    Article  CAS  Google Scholar 

  • Ertem E, Gutt B, Zuber F et al (2017) Core–shell silver nanoparticles in endodontic disinfection solutions enable long-term antimicrobial effect on oral biofilms. ACS Appl Mater Interfaces 9:34762–34772

    Article  CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC et al (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Fan J, Wang S, Zhang X et al (2018) Quantum dots elicit hepatotoxicity through lysosome-dependent autophagy activation and reactive oxygen species production. Acs Biomater Sci Eng 4:1418–1427

    Article  CAS  Google Scholar 

  • Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  Google Scholar 

  • Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  CAS  Google Scholar 

  • Gao J, Sepúlveda MS, Klinkhamer C et al (2015) Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos. Chemosphere 119:948–952

    Article  CAS  Google Scholar 

  • Gao M, Zhao B, Chen M et al (2017) Nrf-2-driven long noncoding RNA ODRUL contributes to modulating silver nanoparticle-induced effects on erythroid cells. Biomaterials 130:14–27

    Article  CAS  Google Scholar 

  • Garcia-Reyero N, Kennedy AJ, Escalon BL et al (2014) Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol 48:4546–4555

    Article  CAS  Google Scholar 

  • George S, Gardner H, Seng EK et al (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48:6374–6382

    Article  CAS  Google Scholar 

  • Ghosh M, Jothiramajayam M, Sinha S et al (2012) In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69

    Article  CAS  Google Scholar 

  • Giannios J (2018) Eradication of glioblastoma multiforme stem-cells with immunotargeted-molecular-robotic-nanosurgery (ITMRN). Neuro-Oncology 20:i5

    Article  Google Scholar 

  • Gorham JM, MacCuspie RI, Klein KL et al (2012) UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. Nanopart Res 14:1139

    Article  CAS  Google Scholar 

  • Gorka DE, Osterberg JS, Gwin CA et al (2015) Reducing environmental toxicity of silver nanoparticles through shape control. Environ Sci Technol 49:10093–10098

    Article  CAS  Google Scholar 

  • Guo Z, Chen G, Zeng G et al (2014) Ultrasensitive detection and co-stability of mercury(II) ions based on amalgam formation with Tween 20-stabilized silver nanoparticles. RSC Adv 4:59275–59283

    Article  CAS  Google Scholar 

  • Guo Z, Chen G, Zeng G et al (2015) Fluorescence chemosensors for hydrogen sulfide detection in biological systems. Analyst 140:1772–1786

    Article  CAS  Google Scholar 

  • Guo Z, Chen G, Liu L et al (2016a) Activity variation of Phanerochaete chrysosporium under nanosilver exposure by controlling of different sulfide sources. Sci Rep 6:20813

    Article  CAS  Google Scholar 

  • Guo Z, Chen G, Zeng G et al (2016b) Determination of inequable fate and toxicity of Ag nanoparticles in Phanerochaete chrysosporium biofilm system through different sulfide sources. Environ Sci Nano 3:1027–1035

    Article  CAS  Google Scholar 

  • Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  CAS  Google Scholar 

  • Hartemann P, Hoet P, Proykova A et al (2015) Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Mater Today 18:122–123

    Article  Google Scholar 

  • Hasan MK, Cheng Y, Kanwar MK et al (2017) Responses of plant proteins to heavy metal stress—a review. Front Plant Sci 8:1492

    Article  Google Scholar 

  • Hayashi Y, Engelmann P, Foldbjerg R et al (2012) Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 46:4166–4173

    Article  CAS  Google Scholar 

  • Hebbalalu D, Lalley J, Nadagouda MN et al (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1:703–712

    Article  CAS  Google Scholar 

  • Hou J, Zhou Y, Wang C et al (2017) Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ Sci Technol 51:12868–12878

    Article  CAS  Google Scholar 

  • Hsin YH, Chen CF, Huang S et al (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  Google Scholar 

  • Huang J, Zhan G, Zheng B et al (2011) Biogenic silver nanoparticles by Cacumen Platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind Eng Chem Res 50:9095–9106

    Article  CAS  Google Scholar 

  • Huang Z, Chen G, Zeng G et al (2017) Toxicity mechanisms and synergies of silver nanoparticles in 2,4-dichlorophenol degradation by Phanerochaete chrysosporium. J Hazard Mater 321:37–46

    Article  CAS  Google Scholar 

  • Huang J, Cao C, Yan C et al (2018) Comparison of Iris pseudacorus wetland systems with unplanted systems on pollutant removal and microbial community under nanosilver exposure. Sci Total Environ 624:1336–1347

    Article  CAS  Google Scholar 

  • Hussain SM, Javorina AK, Schrand AM et al (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92:456–463

    Article  CAS  Google Scholar 

  • Ivask A, Elbadawy A, Kaweeteerawat C et al (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386

    Article  CAS  Google Scholar 

  • Iyer RI, Panda T (2018) Biosynthesis of gold and silver nanoparticles using extracts of callus cultures of pumpkin (Cucurbita maxima). J Nanosci Nanotechnol 18:5341–5353

    Article  CAS  Google Scholar 

  • Jia J, Li F, Zhou H et al (2017) Oral exposure to silver nanoparticles or silver ions may aggravate fatty liver disease in overweight mice. Environ Sci Technol 51:9334–9343

    Article  CAS  Google Scholar 

  • Jiang HS, Yin LY, Ren NN et al (2017a) Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology 11:157–167

    Article  CAS  Google Scholar 

  • Jiang HS, Yin LY, Ren NN et al (2017b) The effect of chronic silver nanoparticles on aquatic system in microcosms. Environ Pollut 223:395–402

    Article  CAS  Google Scholar 

  • Jones AM, Garg S, He D et al (2011) Superoxide-mediated formation and charging of silver nanoparticles. Environ Sci Technol 45:1428–1434

    Article  CAS  Google Scholar 

  • Jung SK, Qu X, Aleman-Meza B et al (2015) Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol 49:2477–2485

    Article  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Ort C et al (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877

    Article  CAS  Google Scholar 

  • Kaveh R, Li YS, Ranjbar S et al (2013) hanges in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644

    Article  CAS  Google Scholar 

  • Khan FR, Paul KB, Dybowska AD et al (2015) Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49:4389–4397

    Article  CAS  Google Scholar 

  • Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  Google Scholar 

  • Kühr S, Schneider S, Meisterjahn B et al (2018) Silver nanoparticles in sewage treatment plant effluents: chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca. Environ Sci Eur 30:7

    Article  CAS  Google Scholar 

  • Lee YH, Cheng FY, Chiu HW et al (2014) Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35:4706–4715

    Article  CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV et al (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  • Levard C, Hotze EM, Colman BP et al (2013a) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–13448

    Article  CAS  Google Scholar 

  • Levard C, Mitra S, Yang T et al (2013b) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–5745

    Article  CAS  Google Scholar 

  • Li G, He D, Qian Y et al (2011) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  Google Scholar 

  • Li L, Wu H, Peijnenburg WJGM et al (2015) Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. Nanotoxicology 9:792–801

    Article  CAS  Google Scholar 

  • Li L, Wang Y, Liu Q et al (2016a) Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe(III). Environ Sci Technol 50:188–196

    Article  CAS  Google Scholar 

  • Li L, Zhou Q, Geng F et al (2016b) Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling. Environ Sci Technol 50:13342–13350

    Article  CAS  Google Scholar 

  • Li WT, Chang HW, Yang WC et al (2017) Immunotoxicity of silver nanoparticles (AgNPs) on the leukocytes of common bottlenose dolphins (Tursiops truncatus). Sci Rep 8:5593

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, Shang E et al (2018) Effects of chloride ions on dissolution, ROS generation, and toxicity of silver nanoparticles under UV irradiation. Environ Sci Technol 52:4842–4849

    Article  CAS  Google Scholar 

  • Liu JY, Sonshine DA, Shervani S et al (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  CAS  Google Scholar 

  • Liu HL, Zhang YL, Yang N et al (2011a) A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2:e159

    Article  CAS  Google Scholar 

  • Liu J, Pennell KG, Hurt RH (2011b) Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45:7345–7353

    Article  CAS  Google Scholar 

  • Liu JF, Legros S, Von der Kammer F et al (2013) Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol 47:4113–4120

    Article  CAS  Google Scholar 

  • Liu J, Liang J, Yuan X et al (2015) An integrated risk model for assessing heavy metal exposure to migratory birds in wetland ecosystem: a case study in Dongting Lake wetland, China. Chemosphere 135:14–19

    Article  CAS  Google Scholar 

  • Liu X, Chen J, Qu C et al (2018) A mussel-inspired facile method to prepare multilayer-AgNP-loaded contact lens for early treatment of bacterial and fungal keratitis. ACS Biomater Sci Eng 4:1568–1579

    CAS  Google Scholar 

  • Lodeiro P, Browning TJ, Achterberg EP et al (2017) Mechanisms of silver nanoparticle toxicity to the coastal marine diatom Chaetoceros curvisetus. Sci Rep 7:10777

    Article  CAS  Google Scholar 

  • Loo SL, Fane AG, Lim TT et al (2013) Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection. Environ Sci Technol 47:9363–9371

    Article  CAS  Google Scholar 

  • Loo SL, Krantz WB, Fane AG et al (2015) Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles. Environ Sci Technol 49:2310–2318

    Article  CAS  Google Scholar 

  • Luo X, Xu S, Yang Y et al (2017) A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans. Chemosphere 168:648–657

    Article  CAS  Google Scholar 

  • Lv J, Bhatia M, Wang X (2017) Roles of mitochondrial DNA in energy metabolism. Adv Exp Med Biol 1038:71–83

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Minocha R et al (2015) Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase. Environ Sci Technol 49:10117–10126

    Article  CAS  Google Scholar 

  • Ma YB, Lu CJ, Junaid M et al (2018) Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.05.019

    Article  Google Scholar 

  • Majdinasab M, Mustansara Y, Abdur R et al (2017) An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food. Sensors 17:1947

    Article  Google Scholar 

  • Mao BH, Chen ZY, Wang YJ et al (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445

    Article  CAS  Google Scholar 

  • Marin S, Mihail Vlasceanu G, Elena Tiplea R et al (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604

    Article  CAS  Google Scholar 

  • Masouleh FF, Amiri BM, Mirvaghefi A et al (2017) Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess 189:448

    Article  CAS  Google Scholar 

  • Massarsky A, Dupuis L, Taylor J et al (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66

    Article  CAS  Google Scholar 

  • Maurer LL, Meyer JN (2016) A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ Sci Nano 3:311–322

    Article  CAS  Google Scholar 

  • Meng X, Wang H, Chen N et al (2018) A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal Chem 90:5646–5653

    Article  CAS  Google Scholar 

  • Naha PC, Mukherjee SP, Byrne HJ (2018) Toxicology of engineered nanoparticles: focus on poly(amidoamine) dendrimers. Int J Environ Res Public Health 15:338

    Article  CAS  Google Scholar 

  • Nallanthighal S, Chan C, Murray TM et al (2017) Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice. Nanotoxicology 11:996–1011

    Article  CAS  Google Scholar 

  • Navarro E, Wagner B, Odzak N et al (2015) Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol 49:8041–8047

    Article  CAS  Google Scholar 

  • Osborne OJ, Lin S, Chang CH et al (2015) Organ-specific and size-dependent ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9:9573–9584

    Article  CAS  Google Scholar 

  • Ostermeyer A, Mumuper CK, Semprini L et al (2013) Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea. Environ Sci Technol 47:14403–14410

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Pang C, Brunelli A, Zhu C et al (2016) Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 10:129–139

    CAS  Google Scholar 

  • Peña LVG, Petkova P, Margalef-Marti R et al (2017) Hybrid chitosan–silver nanoparticles enzymatically embedded on cork filter material for water disinfection. Ind Eng Chem Res 56:3599–3606

    Article  CAS  Google Scholar 

  • Pourzahedi L, Vance M, Eckelman MJ (2017) Life cycle assessment and release studies for 15 nanosilver-enabled consumer products: investigating hotspots and patterns of contribution. Environ Sci Technol 51:7148–7158

    Article  CAS  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA et al (2012) Toxicogenomic responses of nanotoxicity in Daphnia Magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46:6288–6296

    Article  CAS  Google Scholar 

  • Prabhawathi V, Sivakumar PM, Doble M (2012) Green synthesis of protein stabilized silver nanoparticles using Pseudomonas fluorescens, a marine bacterium, and its biomedical applications when coated on polycaprolactam. Ind Eng Chem Res 51:5230–5239

    Article  CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C et al (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68

    Article  CAS  Google Scholar 

  • Prieto EI, Kiat AA (2017) The antimicrobial action of silver nanoparticles on Escherichia coli as revealed by atomic force microscopy. Philipp Sci Lett 10:123–129

    Google Scholar 

  • Qian Y, Zhang J, Hu Q et al (2015) Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials 70:12–22

    Article  CAS  Google Scholar 

  • Quijada-Rodriguez AR, Schultz AG, Wilson JM (2017) Ammonia-independent sodium uptake mediated by Na+ channels and NHEs in the freshwater ribbon leech Nephelopsis obscura. J Exp Biol 220:3270–3279

    Article  Google Scholar 

  • Reinsch BC, Levard C, Li Z et al (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000

    Article  CAS  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  Google Scholar 

  • Sas K, Szabó E, Vécsei L (2018) Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 23:191

    Article  CAS  Google Scholar 

  • Scanlan LD, Reed RB, Loguinov AV et al (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694

    Article  CAS  Google Scholar 

  • Schultz AG, Ong KJ, MacCormack T et al (2012) Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46:10295–10301

    Article  CAS  Google Scholar 

  • Shi J, Sun X, Zou X et al (2014) Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity. Toxicol Lett 229:17–24

    Article  CAS  Google Scholar 

  • Sigg L, Lindauer U (2015) Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide. Environ Pollut 206:582–587

    Article  CAS  Google Scholar 

  • Šiller L, Lemloh ML, Piticharoenphun S et al (2013) Silver nanoparticle toxicity in sea urchin Paracentrotus lividus. Environ Pollut 178:498–502

    Article  CAS  Google Scholar 

  • Silva T, Pokhrel LR, Dubey B, Tolaymat TM et al (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468–469:968–976

    Article  CAS  Google Scholar 

  • Sun X, Shi J, Zou X et al (2017) Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater 317:570–578

    Article  CAS  Google Scholar 

  • Syafiuddin A, Mohd S, Salim R et al (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64:732–756

    Article  CAS  Google Scholar 

  • Teodoro JS, Simões AM, Duarte FV et al (2011) Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 25:664–670

    Article  CAS  Google Scholar 

  • Theodorou IG, Müller KH, Chen S et al (2017) Silver nanowire particle reactivity with human monocyte-derived macrophage cells: intracellular availability of silver governs their cytotoxicity. ACS Biomater Sci Eng 3:2336–2347

    Article  CAS  Google Scholar 

  • Thiagarajah JR, Chang J, Goettel JA et al (2017) Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci USA 114:568–573

    Article  CAS  Google Scholar 

  • Tolaymat TM, El Badawy AM, Genaidy A et al (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  CAS  Google Scholar 

  • van Aerle R, Lange A, Moorhouse A et al (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–8014

    Article  CAS  Google Scholar 

  • Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in vitro antibacterial activity. Mater Lett 65:999–1002

    Article  CAS  Google Scholar 

  • Vilela P, Liu H, Lee SC et al (2018) A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants. Sci Total Environ 633:989–998

    Article  CAS  Google Scholar 

  • Wang J, Wang WX (2014) Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environ Sci Technol 48:8152–8161

    Article  CAS  Google Scholar 

  • Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481

    Article  CAS  Google Scholar 

  • Wang D, Zhao L, Ma H et al (2017) Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ Sci Technol 51:10137–10145

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Chen H et al (2018) Risk of silver transfer from soil to the food chain is low after long-term (20 years) field applications of sewage sludge. Environ Sci Technol 52:4901–4909

    Article  CAS  Google Scholar 

  • Watson D, Ge J, Cohen J et al (2014) High throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8:2118–2133

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  Google Scholar 

  • Yadu B, Chandrakar V, Korram J et al (2018) Silver nanoparticle modulates gene expressions, glyoxalase system and oxidative stress markers in fluoride stressed Cajanus cajan L. J Hazard Mater 353:44–52

    Article  CAS  Google Scholar 

  • Yan X, He B, Liu L et al (2018) Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564

    Article  CAS  Google Scholar 

  • Yang Y, Alvarez PJJ (2015) Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ Sci Technol Lett 2:221–226

    Article  CAS  Google Scholar 

  • Yang EJ, Kim S, Kim JS et al (2012a) Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials 33:6858–6867

    Article  CAS  Google Scholar 

  • Yang X, Gondikas AP, Marinakos SM et al (2012b) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127

    Article  CAS  Google Scholar 

  • Yang X, Jiang C, Hsu-Kim H et al (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48:3486–3495

    Article  CAS  Google Scholar 

  • Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367

    Article  CAS  Google Scholar 

  • Yu S, Yin Y, Chao J et al (2014) Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+. Environ Sci Technol 48:403–411

    Article  CAS  Google Scholar 

  • Yuan L, Richardson CJ, Ho M et al (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52:2558–2565

    Article  CAS  Google Scholar 

  • Yue Y, Behra R, Sigg L et al (2016) Silver nanoparticle–protein interactions in intact rainbow trout gill cell. Environ Sci Nano 3:1174–1185

    Article  CAS  Google Scholar 

  • Yue Y, Li X, Sigg L et al (2017) Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnol 15:16

    Article  CAS  Google Scholar 

  • Zarska M, Sramek M, Novotny F et al (2018) Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials 154:275–290

    Article  CAS  Google Scholar 

  • Zhang Q, Yang WJ, Man N et al (2009) Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy 5:1107–1117

    Article  CAS  Google Scholar 

  • Zhang H, Smith JA, Oyanedel-Craver V (2012) The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 46:691–699

    Article  CAS  Google Scholar 

  • Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427

    Article  CAS  Google Scholar 

  • Zhao X, Ibuki Y (2015) Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light. Environ Sci Technol 49:5003–5012

    Article  CAS  Google Scholar 

  • Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46:11345–11351

    Article  CAS  Google Scholar 

  • Zheng Y, Hou L, Liu M et al (2017) Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci Adv 3:e1603229

    Article  CAS  Google Scholar 

  • Zhou W, Jia Z, Xiong P et al (2017) Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces 9:25830–25846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0162), the National Natural Science Foundation of China (51521006 and 51508186), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Guo or Guangming Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zeng, G., Cui, K. et al. Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett 17, 319–333 (2019). https://doi.org/10.1007/s10311-018-0800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-0800-1

Keywords

Navigation