Skip to main content

Microwave-enhanced advanced oxidation processes for the degradation of dyes in water

Abstract

Contamination of water bodies with dyes has become a serious global concern affecting the whole biosphere. Microwave irradiation and advanced oxidation processes (AOP) have recently gained importance as efficient remediation methods. Indeed, microwave offers special features such as fast, uniform, selective and controlled heating that result in a rapid reaction rate, whereas advanced oxidation processes are able to mineralize any organic pollutant. Here we review microwave-enhanced advanced oxidation processes for the removal or degradation of synthetic dyes, and we compare with conventional treatment methods. We found that microwave-enhanced AOP improve the efficiency of dye degradation. However, cost analyses reveal an economic limitation of microwave-enhanced processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abrahart EN (1977) Dyes and their intermediates. Chemical Publishing, New York, pp 1–12

    Google Scholar 

  2. Ajmal A, Majeedb I, Malika RN et al (2016) Photocatalytic degradation of textile dyes on Cu2O–CuO/TiO2 anatase powders. J Environ Chem Eng 4:2138–2146. https://doi.org/10.1016/j.jece.2016.03.041

    CAS  Article  Google Scholar 

  3. Akarslan F, Demiralay H (2015) Effects of textile materials harmful to human health. Acta Phys Pol A 128(2B):B407. https://doi.org/10.12693/APhysPolA.128.B-407

    CAS  Article  Google Scholar 

  4. Alfaro MAQ, Ferro S, Martínez-Huitle CA, Vong YM (2006) Boron doped diamond electrode for the wastewater treatment. J Braz Chem Soc 17(2):227–236. https://doi.org/10.1590/S0103-50532006000200003

    CAS  Article  Google Scholar 

  5. Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213:251–273. https://doi.org/10.1007/s11270-010-0382-4

    CAS  Article  Google Scholar 

  6. Al-Qodah Z, Al-Shannag M, Bani-Melhem K, Assirey E, Yahya MA, Al-Shawabkeh A (2018) Free radical-assisted electrocoagulation processes for wastewater treatment. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0711-1

    Article  Google Scholar 

  7. Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. https://doi.org/10.1016/j.cej.2012.06.038

    CAS  Article  Google Scholar 

  8. Appels L, Houtmeyers S, Degrève J, Van Impe J, Dewil R (2013) Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresour Technol 128:598–603. https://doi.org/10.1016/j.biortech.2012.11.007

    CAS  Article  Google Scholar 

  9. Appleton TJ, Colder RI, Kingman SW, Lowndes IS, Read AG (2005) Microwave technology for energy-efficient processing of waste. Appl Energy 81(1):85–113. https://doi.org/10.1016/j.apenergy.2004.07.002

    CAS  Article  Google Scholar 

  10. Asgher M, Bhatti HN (2012) Evaluation of thermodynamics and effect of chemical treatments on sorption potential of (Citrus) waste biomass for removal of anionic dyes from aqueous solutions. Ecol Eng 38(1):79–85. https://doi.org/10.1016/j.ecoleng.2011.10.004

    Article  Google Scholar 

  11. Avlonitis SA, Poulios I, Sotiriou D, Pappas M, Moutesidis K (2008) Simulated cotton dye effluents treatment and reuse by nanofiltration. Desalination 221:259–267. https://doi.org/10.1016/j.desal.2007.01.082

    CAS  Article  Google Scholar 

  12. Ayadi I, Souissi Y, Jlassi I, Peixoto F, Mnif W (2016) Chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: a critical review. J Develop Drugs 5(1):1000151. https://doi.org/10.4172/2329-6631.1000151

    CAS  Article  Google Scholar 

  13. Banat F, Al-Asheh S, Nusair M (2005) Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes. Desalination 181(1–3):225–232. https://doi.org/10.1016/j.desal.2005.04.005

    CAS  Article  Google Scholar 

  14. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Barragan BE, Costa C, Carmen Marquez M (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigments 75:73–81. https://doi.org/10.1016/j.dyepig.2006.05.014

    CAS  Article  Google Scholar 

  16. Barros WRP, Steter JR, Lanza MRV, Motheo AJ (2014) Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode. Electrochim Acta 143:180–187. https://doi.org/10.1016/j.electacta.2014.07.141

    CAS  Article  Google Scholar 

  17. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204. https://doi.org/10.1007/s10311-009-0228-8

    CAS  Article  Google Scholar 

  18. Bautitz IR, Nogueira RFP (2007) Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effect. J Photochem Photobiol A 187:33–39. https://doi.org/10.1016/j.jphotochem.2006.09.009

    CAS  Article  Google Scholar 

  19. Behnajady MA, Modirshahla N (2006) Evaluation of electrical energy per order (EEO) with kinetic modeling on photooxidative degradation of CI acid orange 7 in a tubular continuous-flow photoreactor. Ind Eng Chem Res 45:553–557. https://doi.org/10.1021/ie050111c

    CAS  Article  Google Scholar 

  20. Behnajady MA, Modirshahla N, Shokri M (2004) Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55:129–134. https://doi.org/10.1016/j.chemosphere.2003.10.054

    CAS  Article  Google Scholar 

  21. Behnajady MA, Vahid B, Modirshahla N, Shokri M (2009) Evaluation of electrical energy per order (EEO) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination 249:99–103. https://doi.org/10.1016/j.desal.2008.07.025

    CAS  Article  Google Scholar 

  22. Bi X, Wang P, Jiao C, Cao H (2009) Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process. J Hazard Mater 168:895–900. https://doi.org/10.1016/j.jhazmat.2009.02.108

    CAS  Article  Google Scholar 

  23. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73(4):627–637. https://doi.org/10.1351/pac200173040627

    CAS  Article  Google Scholar 

  24. Bottrel S, Amorim C, Ramos V, Romão G, Leao M (2015) Ozonation and peroxone oxidation of ethylenethiourea in water: operational parameter optimization and by-product identification. Environ Sci Pollut Res 22:903–908. https://doi.org/10.1007/s11356-014-3616-y

    CAS  Article  Google Scholar 

  25. Bouaziz I, Chiron C, Abdelhedi R, Savall A, Groenen Serrano K (2014) Treatment of dilute methylene blue-containing wastewater by coupling sawdust adsorption and electrochemical regeneration. Environ Sci Pollut Res 21:8565–8572. https://doi.org/10.1007/s11356-014-2785-z

    CAS  Article  Google Scholar 

  26. Buthelezi SP, Olaniran AO, Pillay B (2012) Textile dye removal from waste- water effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 17(12):14260–14274. https://doi.org/10.3390/molecules171214260

    CAS  Article  Google Scholar 

  27. Cai YJ, Lin LN, Xia DS, Zeng QF, Zhu HL (2011) Degradation of reactive brilliant red X-3B dye by microwave electrodeless UV irradiation. Clean Soil Air Water 39(1):68–73. https://doi.org/10.1002/clen.201000107

    CAS  Article  Google Scholar 

  28. Cai MQ, Zhu YZ, Wei ZS, Hu JQ, Pan SD, Xiao RY, Dong CY, Jin MC (2017) Rapid decolorization of dye Orange G by microwave enhanced Fenton-like reaction with delafossite-type CuFeO2. Sci Total Environ 580:966–973. https://doi.org/10.1016/j.scitotenv.2016.12.047

    CAS  Article  Google Scholar 

  29. Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK (2007) Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics. Colloids Surf A Physicochem Eng Asp 299(1):146–152. https://doi.org/10.1016/j.colsurfa.2006.11.036

    CAS  Article  Google Scholar 

  30. Cheremisinoff NP (2002) Handbook of water and wastewater treatment technologies. Butterworth Heinemann, Boston. https://doi.org/10.1016/b978-075067498-0/50000-0

    Book  Google Scholar 

  31. Chiang LC, Chang JE, Wen TC (1995) Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res 29:671–678. https://doi.org/10.1016/0043-1354(94)00146-X

    CAS  Article  Google Scholar 

  32. Christie RM (2007) Environmental aspects of textile dyeing. Woodhead, Boca Raton. https://doi.org/10.1533/9781845693091

    Book  Google Scholar 

  33. Církva V, Zabová H (2010) Thin nanoporous titania films on the electrodeless discharge lamps for photocatalysis. In: Castello GK (ed) Handbook of photocatalysts: preparation, structure and applications. Nova Science Publishers, New York, pp 103–151

    Google Scholar 

  34. Clarke E, Anliker R (1980) Organic dyes and pigments. Handb Environ Chem 3(Part A):181–215. https://doi.org/10.1007/978-3-540-38522-6_7

    CAS  Article  Google Scholar 

  35. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073

    CAS  Article  Google Scholar 

  36. Cravotto G, Binello A, Di Carlo S, Orio L, Wu Z-L, Ondruschka B (2010) Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environ Sci Pollut Res 17:674–687. https://doi.org/10.1007/s11356-009-0253-y

    CAS  Article  Google Scholar 

  37. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    CAS  Article  Google Scholar 

  38. Curcio MS, Oliveira MP, Waldman WR, Sánchez B, Canela MC (2015) TiO2 sol–gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability. Environ Sci Pollut Res 22:800–809. https://doi.org/10.1007/s11356-014-2683-4

    CAS  Article  Google Scholar 

  39. Daneshvar N, Aleboyeh A, Khataee AR (2005) The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere 59:761–767. https://doi.org/10.1016/j.chemosphere.2004.11.012

    CAS  Article  Google Scholar 

  40. Dantas RF, Contreras S, Sans C, Esplugas S (2008) Sulfamethoxazole abatement by means of ozonation. J Hazard Mater 150:790–794. https://doi.org/10.1016/j.jhazmat.2007.05.034

    CAS  Article  Google Scholar 

  41. Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605. https://doi.org/10.1007/s10311-017-0648-9

    CAS  Article  Google Scholar 

  42. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167(1–3):1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114

    CAS  Article  Google Scholar 

  43. Diagne M, Sharma VK, Oturan N, Oturan MA (2014) Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. Environ Chem Lett 12:219–224. https://doi.org/10.1007/s10311-013-0437-z

    CAS  Article  Google Scholar 

  44. Dinçer AR, Günes Y, Karakaya N, Günes E (2007) Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresour Technol 98:834–839. https://doi.org/10.1016/j.biortech.2006.03.009

    CAS  Article  Google Scholar 

  45. Dogan D, Turkdemir H (2005) Electrochemical oxidation of textile dye indigo. J Chem Technol Biotechnol 80:916–923. https://doi.org/10.1002/jctb.1262

    CAS  Article  Google Scholar 

  46. dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385. https://doi.org/10.1016/j.biortech.2006.11.013

    CAS  Article  Google Scholar 

  47. Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S (2015) Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal 5:4629–4636. https://doi.org/10.1021/acscatal.5b00774

    CAS  Article  Google Scholar 

  48. Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84:57–71. https://doi.org/10.1016/S0304-3894(01)00202-3

    CAS  Article  Google Scholar 

  49. Ebenezer AV, Arulazhagan P, Kumar SA, Yeom I-T, Banu JR (2015) Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl Energy 145:104–110. https://doi.org/10.1016/j.apenergy.2015.01.133

    CAS  Article  Google Scholar 

  50. Fang X, Xiao J, Yang S, He H, Sun C (2015) Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of reactive brilliant red X-3B. Appl Catal B Environ 162:544–550. https://doi.org/10.1016/j.apcatb.2014.07.022

    CAS  Article  Google Scholar 

  51. Faouzi AM, Nasr B, Abdellatif G (2007) Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond. Dyes Pigments 73:86–89. https://doi.org/10.1016/j.dyepig.2005.10.013

    CAS  Article  Google Scholar 

  52. Fast SA, Gude VG, Truax DD, Martin J, Magbanua BS (2017) A critical evaluation of advanced oxidation processes for emerging contaminants removal. Environ Process 4:283–302. https://doi.org/10.1007/s40710-017-0207-1

    CAS  Article  Google Scholar 

  53. Ferrari C, Longo I, Tombari E, Bramanti E (2009) A novel microwave photochemical reactor for the oxidative decomposition of Acid Orange 7 azo dye by MW/UV/H2O2 process. J Photochem Photobiol A 204:115–121. https://doi.org/10.1016/j.jphotochem.2009.03.001

    CAS  Article  Google Scholar 

  54. Ferrari C, Longo I, Tombari E, Gasperini L (2010) A new integrated photoreactor for microwave assisted decolorization Acid Orange 7 (AO7) in aqueous solutions. Int J Chem React Eng 8:A72. https://doi.org/10.2202/1542-6580.2134

    Article  Google Scholar 

  55. Frijters CTMJ, Vos RH, Scheffer G, Mulder R (2006) Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system. Water Res 40:1249–1257. https://doi.org/10.1016/j.watres.2006.01.013

    CAS  Article  Google Scholar 

  56. Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79(3):251–262. https://doi.org/10.1016/S0960-8524(01)00028-1

    CAS  Article  Google Scholar 

  57. Fu J, Xu Z, Li QS, Chen S, An SQ, Zeng QF, Zhu HL (2010) Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite. J Environ Sci 22:512–518. https://doi.org/10.1016/S1001-0742(09)60142-X

    CAS  Article  Google Scholar 

  58. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062

    CAS  Article  Google Scholar 

  59. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrogen Energy 32:2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009

    CAS  Article  Google Scholar 

  60. Gao YQ, Gao NY, Deng Y, Yang YQ, Ma Y (2012) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem Eng J 195:248–253. https://doi.org/10.1016/j.cej.2012.04.084

    CAS  Article  Google Scholar 

  61. Gao J, Yang S, Li N, Meng L, Wang F, He H, Sun C (2016) Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation. Appl Surf Sci 379:140–149. https://doi.org/10.1016/j.apsusc.2016.04.041

    CAS  Article  Google Scholar 

  62. García MC, Mora M, Esquivel D, Foster JE, Rodero A, Jiménez-Sanchidrián C, Romero-Salguero FJ (2017) Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 180:239–246. https://doi.org/10.1016/j.chemosphere.2017.03.126

    CAS  Article  Google Scholar 

  63. Giokas DL, Vlessidis AG (2007) Application of a novel chemometric approach to the determination of aqueous photolysis rates of organic compounds in natural waters. Talanta 71:288–295. https://doi.org/10.1016/j.talanta.2006.03.060

    CAS  Article  Google Scholar 

  64. Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (·OH). Chem Rev 115:13051–13092. https://doi.org/10.1021/cr500310b

    CAS  Article  Google Scholar 

  65. Gole VL, Gogate PR (2014) Degradation of brilliant green dye using combined treatment strategies based on different irradiations. Sep Purif Technol 133:212–220. https://doi.org/10.1016/j.seppur.2014.07.002

    CAS  Article  Google Scholar 

  66. Gude VG, Martinez-Guerra E (2017) Green chemistry with process intensification for sustainable biodiesel production. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0680-9

    Article  Google Scholar 

  67. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    CAS  Article  Google Scholar 

  68. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34. https://doi.org/10.1016/j.cis.2013.03.003

    CAS  Article  Google Scholar 

  69. Hájek M (2006) Microwave catalysis in organic synthesis. In: Loupy A (ed) Microwaves in organic synthesis. Wiley-VCH, Weinheim, pp 615–652. https://doi.org/10.1002/9783527619559.ch13

    Chapter  Google Scholar 

  70. Hariharasuthan R, Rao AN, Bhaskaran A (2013) Adsorption studies on reactive blue 4 by varying the concentration of MgO in Sorel’s cement. Int J Eng Sci 2(1):287–292

    Google Scholar 

  71. He Z, Sun C, Yang S, Ding Y, He H, Wang Z (2009a) Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J Hazard Mater 162:1477–1486. https://doi.org/10.1016/j.jhazmat.2008.06.047

    CAS  Article  Google Scholar 

  72. He H, Yang S, Yu K, Ju Y, Sun C, Wang L (2009b) Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. J Hazard Mater 173:393–400. https://doi.org/10.1016/j.jhazmat.2009.08.084

    CAS  Article  Google Scholar 

  73. Hernandez R, Zappi M, Colucci J, Jones R (2002) Comparing the performance of various advanced oxidation processes for treatment of acetone contaminated water. J Hazard Mater 92:33–50. https://doi.org/10.1016/S0304-3894(01)00371-5

    CAS  Article  Google Scholar 

  74. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47. https://doi.org/10.1021/jo7022697

    CAS  Article  Google Scholar 

  75. Hidaka H, Saitou A, Honjou H, Hosoda K, Moriya M, Serpone N (2007) Microwave assisted dechlorination of polychlorobenzenes by hypophosphite anions in aqueous alkaline media in the presence of Pd-loaded active carbon. J Hazard Mater 148:22–28. https://doi.org/10.1016/j.jhazmat.2007.01.143

    CAS  Article  Google Scholar 

  76. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices-a review. J Environ Manag 92(10):2304–2347. https://doi.org/10.1016/j.jenvman.2011.05.023

    CAS  Article  Google Scholar 

  77. Hong J, Sun C, Yang SG, Liu YZ (2006) Photocatalytic degradation of methylene blue in TiO2 aqueous suspensions using microwave powered electrodeless discharge lamps. J Hazard Mater 133:162–166. https://doi.org/10.1016/j.jhazmat.2005.10.004

    CAS  Article  Google Scholar 

  78. Hong J, Ta N, Yanga S, Liu Y, Sun C (2007) Microwave-assisted direct photolysis of bromophenol blue using electrodeless discharge lamps. Desalination 214:62–69. https://doi.org/10.1016/j.desal.2006.09.026

    CAS  Article  Google Scholar 

  79. Hong J, Yuan N, Wang Y, Qi S (2012) Efficient degradation of Rhodamine B in microwave-H2O2 system at alkaline pH. Chem Eng J 191:364–368. https://doi.org/10.1016/j.cej.2012.03.032

    CAS  Article  Google Scholar 

  80. Horikoshi S, Serpone N (2014) Role of microwaves in heterogeneous catalytic systems. Catal Sci Technol 4:1197–1210. https://doi.org/10.1039/C3CY00753G

    CAS  Article  Google Scholar 

  81. Horikoshi S, Hidaa H, Serpone N (2002a) Environmental remediation by an integrated microwave/microwave-assisted degradation of Rhodamine-B dye in aqueous TiO2 dispersions. Environ Sci Technol 36(6):1357–1366. https://doi.org/10.1021/es010941r

    CAS  Article  Google Scholar 

  82. Horikoshi S, Hidaka H, Serpone N (2002b) Environmental remediation by an integrated microwave/UV-illumination method II. Characteristics of a novel UV–VIS–microwave integrated irradiation device in photodegradation processes. J Photochem Photobiol A 153:185–189. https://doi.org/10.1016/S1010-6030(02)00263-0

    CAS  Article  Google Scholar 

  83. Horikoshi S, Hidaka H, Serpone N (2003a) Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chem Phys Lett 376:475–480. https://doi.org/10.1016/S0009-2614(03)01007-8

    CAS  Article  Google Scholar 

  84. Horikoshi S, Saitou A, Hidaka H, Serpone N (2003b) Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of Rhodamine-B under UV/Vis radiation. Environ Sci Technol 37(24):5813–5822. https://doi.org/10.1021/es030326i

    CAS  Article  Google Scholar 

  85. Houtmeyers S, Degrève J, Willems K, Dewil R, Appels L (2014) Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge. Bioresour Technol 171:44–49. https://doi.org/10.1016/j.biortech.2014.08.029

    CAS  Article  Google Scholar 

  86. Huddersman K, Palitsin AV (2017) Modelling and simulation of a novel pilot-scale microwave assisted catalytic reactor for continuous flow treatment of wastewaters. In: Mannina G (ed) Frontiers in wastewater treatment and modelling. Springer, Berlin, pp 644–649. https://doi.org/10.1007/978-3-319-58421-8_101

    Chapter  Google Scholar 

  87. Hunger K (2003) Industrial dyes: chemistry, properties, applications. Wiley-VCH, Weinheim. https://doi.org/10.1002/3527602011

    Book  Google Scholar 

  88. Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28:353–414. https://doi.org/10.1080/01919510600985937

    CAS  Article  Google Scholar 

  89. Jara CC, Fino D, Specchia V, Saracco G, Spinelli P (2007) Electrochemical removal of antibiotics from wastewater. Appl Catal B 70:479–487. https://doi.org/10.1016/j.apcatb.2005.11.035

    CAS  Article  Google Scholar 

  90. Ju YM, Yang SG, Ding YC, Sun C, Zhang A, Wang L (2008) Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways. J Phys Chem A 112:11172–11177. https://doi.org/10.1021/jp804439z

    CAS  Article  Google Scholar 

  91. Ju YM, Yang SG, Ding YC, Sun C, Gu CG, He Z, Qin C, He H, Xu B (2009) Microwave-enhanced H2O2-based process for treatment aqueous malachite green solutions: intermediates and degradation mechanism. J Hazard Mater 171:123–132. https://doi.org/10.1016/j.jhazmat.2009.05.120

    CAS  Article  Google Scholar 

  92. Jung SC (2011) The microwave-assisted photo-catalytic degradation of organic dyes. Water Sci Technol 63(7):1491–1498. https://doi.org/10.2166/wst.2011.393

    CAS  Article  Google Scholar 

  93. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour Technol 87:129–132. https://doi.org/10.1016/S0960-8524(02)00201-8

    CAS  Article  Google Scholar 

  94. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0

    CAS  Article  Google Scholar 

  95. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem 43:6250–6284. https://doi.org/10.1002/anie.200400655

    CAS  Article  Google Scholar 

  96. Kariyajjanavar P, Narayana J, Nayaka YA (2013) Degradation of textile dye C.I. Vat Black 27 by electrochemical method by using carbon electrodes. J Environ Chem Eng 1(4):975–980. https://doi.org/10.1016/j.jece.2013.08.002

    CAS  Article  Google Scholar 

  97. Kenge AA, Liao PH, Lo KV (2009) Treating solid dairy manure using microwave-enhanced advanced oxidation process. J Environ Sci Health B 44(6):606–612. https://doi.org/10.1080/03601230903000693

    CAS  Article  Google Scholar 

  98. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer, Dordrecht, pp 55–71. https://doi.org/10.1007/978-94-007-7890-0_4

    Chapter  Google Scholar 

  99. Khataee AR, Khataee HR (2008) Photooxidative removal of the herbicide Acid Blue 9 in the presence of hydrogen peroxide: modeling of the reaction for evaluation of electrical energy per order (EEO). J Environ Sci Health B 43:562–568. https://doi.org/10.1080/03601230802234385

    CAS  Article  Google Scholar 

  100. Kim SJ, Kim SC, Seo SG, Lee DJ, Lee H, Park SH, Jung SC (2011) Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system. Catal Today 164(1):384–390. https://doi.org/10.1016/j.cattod.2010.10.025

    CAS  Article  Google Scholar 

  101. Kim T, Lee J, Lee KH (2014) Microwave heating of carbon-based solid materials. Carbon Lett 15(1):15–24. https://doi.org/10.5714/CL.2014.15.1.015

    Article  Google Scholar 

  102. Klán P, Literák J, Hájek M (1999) The electrodeless discharge lamp: a prospective tool for photochemistry. J Photochem Photobiol A 128:145–149. https://doi.org/10.1016/S1010-6030(99)00165-3

    Article  Google Scholar 

  103. Klm YB, Ahn JH (2014) Microwave-assisted decolorization and decomposition of methylene blue with persulfate. Int Biodeterior Biodegrad 95:208–211. https://doi.org/10.1016/j.ibiod.2014.03.023

    CAS  Article  Google Scholar 

  104. Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005

    CAS  Article  Google Scholar 

  105. Kommineni S, Zoeckler J, Stocking A, Liang PS, Flores A, Rodriguez R, Browne T, Roberts PR, Brown A (2000) Chapter 3.0 Advanced oxidation processes. In: Melin G (ed) Treatment technologies for removal of methyl tertiary butyl ether (MTBE) from drinking water: air stripping, advanced oxidation processes, granular actived carbon and synthetic resin sorbents, 2nd edn. National Water Research Institute, Fountain Valley, pp 109–208

    Google Scholar 

  106. Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  107. Krishnan S, Rawindran H, Sinnathambi CM, Lim JW (2017) Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. IOP Conf Ser Mater Sci Eng 206:012089. https://doi.org/10.1088/1757-899X/206/1/012089

    Article  Google Scholar 

  108. Kuan W, Chen C, Hu C, Tzou Y (2013) Kinetic modeling for microwave-enhanced degradation of methylene blue using manganese oxide. Int J Photoenergy. https://doi.org/10.1155/2013/916849

    Article  Google Scholar 

  109. Lacombe S, Fresno F, Štangar UL (2014) Photocatalysis: new highlights from JEP 2013. Environ Sci Pollut Res 21(19):11111–11115. https://doi.org/10.1007/s11356-014-3192-1

    Article  Google Scholar 

  110. Lanzarini-Lopes M, Garcia-Segura S, Hristovski K, Westerhoff P (2017) Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 188:304–311. https://doi.org/10.1016/j.chemosphere.2017.08.145

    CAS  Article  Google Scholar 

  111. Lazar T (2005) Color chemistry: synthesis, properties, and applications of organic dyes and pigments. Color Res Appl 30(4):313–314. https://doi.org/10.1002/col.20132

    Article  Google Scholar 

  112. Leitner NKV (2017) Sulfate radical ion-based AOPs (Chapter 10). In: Stefan MI (ed) Advanced oxidation processes for water treatment: fundamentals and applications. IWA Publishing, London, pp 429–460

    Google Scholar 

  113. Li Y, Zheng L, Wu T (2012) Oxidation treatment of reactive red X-3B dyestuff wastewater by microwave-Fenton process. J Shenyang Jianzhu Univ (Nat Sci) 28(6):1093–1097

    CAS  Google Scholar 

  114. Liang C, Su HW (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562. https://doi.org/10.1021/ie9002848

    CAS  Article  Google Scholar 

  115. Liang R, Hu A, Hatat-Fraile M, Zhou N (2014) Fundamentals on adsorption, membrane filtration, and advanced oxidation processes for water treatment. In: Hu A, Apblett A (eds) Nanotechnology for water treatment and purification. Springer, Berlin, pp 1–45. https://doi.org/10.1007/978-3-319-06578-6_1

    Chapter  Google Scholar 

  116. Literák J, Klán P (2000) The electrodeless discharge lamp: a prospective tool for photochemistry Part 2. Scope and limitation. J Photochem Photobiol A 137:29–35. https://doi.org/10.1016/S1010-6030(00)00335-X

    Article  Google Scholar 

  117. Liu SQ (2012) Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ Chem Lett 10:209–216. https://doi.org/10.1007/s10311-011-0348-9

    CAS  Article  Google Scholar 

  118. Liu ST, Huang J, Ye Y, Zhang AB, Pan L, Chen XG (2013) Microwave enhanced Fenton process for the removal of methylene blue from aqueous solution. Chem Eng J 215–216:586–590. https://doi.org/10.1016/j.cej.2012.11.003

    CAS  Article  Google Scholar 

  119. Liu ST, Zhang AB, Yan KK, Ye Y, Chen XG (2014a) Microwave-enhanced catalytic degradation of methylene blue by porous MFe2O4 (M = Mn, Co) nanocomposites: pathways and mechanisms. Sep Purif Technol 135:35–41. https://doi.org/10.1016/j.seppur.2014.07.049

    CAS  Article  Google Scholar 

  120. Liu X, An S, Shi W, Yang Q, Zhang L (2014b) Microwave-induced catalytic oxidation of malachite green under magnetic Cu-ferrites: new insight into the degradation mechanism and pathway. J Mol Catal A Chem 395:243–250. https://doi.org/10.1016/j.molcata.2014.08.028

    CAS  Article  Google Scholar 

  121. Liu X, Zhang T, Xu D, Zhang L (2016) Microwave-assisted catalytic degradation of crystal violet with barium ferrite nanomaterial. Ind Eng Chem Res 55:11869–11877. https://doi.org/10.1021/acs.iecr.6b01762

    CAS  Article  Google Scholar 

  122. Lo KV, Liao PH (2011) Microwave enhanced advanced oxidation in the treatment of dairy manure. In: Chandra U (ed) Microwave heating. InTech-Open Access Publisher, Rijeka, pp 91–106. https://doi.org/10.5772/24878

    Chapter  Google Scholar 

  123. Lo KV, Ning R, de Oliveira CKY, Zetter MD, Srinivasan A, Liao PH (2017) Application of microwave oxidation process for sewage sludge treatment in a continuous-flow system. J Environ Eng 143(9):04017050. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001247

    CAS  Article  Google Scholar 

  124. Lopes A, Martins S, Morao A, Magrinho M, Gonçalves I (2004) Degradation of a textile dye C.I. direct red 80 by electrochemical processes. Port Electrochim Acta 22:279–294

    CAS  Article  Google Scholar 

  125. Lovato ME, Gilliard MB, Cassano AE, Martín CA (2015) Kinetics of the degradation of n-butyl benzyl phthalate using O3/UV, direct photolysis, direct ozonation and UV effects. Environ Sci Pollut Res 22:909–917. https://doi.org/10.1007/s11356-014-2796-9

    CAS  Article  Google Scholar 

  126. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005

    CAS  Article  Google Scholar 

  127. Mahmood MA, Baruah S, Anal AK, Dutta J (2012) Heterogeneous photocatalysis for removal of microbes from water. Environ Chem Lett 10:145–151. https://doi.org/10.1007/s10311-011-0347-x

    CAS  Article  Google Scholar 

  128. Malik R, Ramteke DS, Wate SR (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27:1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009

    CAS  Article  Google Scholar 

  129. Mandal S, Natarajan S (2015) Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3−xO4 mixed oxides. J Environ Chem Eng 3(2):1185–1193. https://doi.org/10.1016/j.jece.2015.04.021

    CAS  Article  Google Scholar 

  130. Manenti DR, Soares PA, Silva TFCV et al (2015) Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environ Sci Pollut Res 22:833–845. https://doi.org/10.1007/s11356-014-2767-1

    CAS  Article  Google Scholar 

  131. Mao Y, Xi Z, Wang W, Ma C, Yue Q (2015) Kinetics of Solvent Blue and Reactive Yellow removal using microwave radiation in combination with nanoscale zero-valent iron. J Environ Sci 30:164–172. https://doi.org/10.1016/j.jes.2014.09.030

    Article  Google Scholar 

  132. Mao Y, Xu J, Ma C (2016) A continuous microwave/nZVI treatment system for malachite green removal: system setup and parameter optimization. Desalin Water Treat 57:24395–24405. https://doi.org/10.1080/19443994.2016.1141326

    CAS  Article  Google Scholar 

  133. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    CAS  Article  Google Scholar 

  134. Mawioo PM, Hooijmans CM, Garcia HA, Brdjanovic D (2016) Microwave treatment of faecal sludge from intensively used toilets in the slums of Nairobi, Kenya. J Environ Manag 184:575–584. https://doi.org/10.1016/j.jenvman.2016.10.019

    Article  Google Scholar 

  135. Měšťánková H, Mailhot G, Jirkovský J, Krýsa J, Bolte M (2009) Effect of iron speciation on the photodegradation of Monuron in combined photocatalytic systems with immobilized or suspended TiO2. Environ Chem Lett 7:127–132. https://doi.org/10.1007/s10311-008-0145-2

    CAS  Article  Google Scholar 

  136. Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manag 102:148–164. https://doi.org/10.1016/j.jenvman.2012.02.021

    CAS  Article  Google Scholar 

  137. Michael I, Frontistis Z, Fatta-Kassinos D (2013) Chapter 11 Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs). In: Barcelo D (ed) Comprehensive analytical chemistry (vol 62: analysis, removal, effects and risk of pharmaceuticals in the water cycle), 2nd edn. Elsevier, Amsterdam, pp 345–407. https://doi.org/10.1016/b978-0-444-62657-8.00011-2

    Chapter  Google Scholar 

  138. Milenova K, Avramova I, Eliyas A, Blaskov V, Stambolova I, Kassabova N (2014) Application of activated M/ZnO (M = Mn Co, Ni, Cu, Ag) in photocatalytic degradation of diazo textile coloring dye. Environ Sci Pollut Res 21(21):12249–12256. https://doi.org/10.1007/s11356-014-2955-z

    CAS  Article  Google Scholar 

  139. Miralles-Cuevas S, Oller I, Pérez JAS, Malato S (2015) Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents. Environ Sci Pollut Res 22:846–855. https://doi.org/10.1007/s11356-014-2871-2

    CAS  Article  Google Scholar 

  140. Molla A, Sahu M, Hussain S (2016) Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci Rep 6:26034. https://doi.org/10.1038/srep26034

    CAS  Article  Google Scholar 

  141. Monteiro RAR, Lopes FVS, Boaventura RAR, Silva AMT, Vilar VJP (2015) Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications. Environ Sci Pollut Res 22:810–819. https://doi.org/10.1007/s11356-014-2943-3

    CAS  Article  Google Scholar 

  142. Moradi SE, Dadfarnia S, Shabani AMH, Emami S (2017) Microwave-enhanced Fenton-like degradation by surface-modified metal-organic frameworks as a promising method for removal of dye from aqueous samples. Turk J Chem 41:426–439. https://doi.org/10.3906/kim-1607-5

    CAS  Article  Google Scholar 

  143. Moreira AJ, Pinheiro BS, Araújo AF, Freschi GPG (2016) Evaluation of atrazine degradation applied to different energy systems. Environ Sci Pollut Res 23:18502–18511. https://doi.org/10.1007/s11356-016-6831-x

    CAS  Article  Google Scholar 

  144. Mudhoo A, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41(11):999–1066. https://doi.org/10.1080/10643380903392767

    CAS  Article  Google Scholar 

  145. Müler P, Klán P, Církva V (2003) The electrodeless discharge lamp: a prospective tool for photochemistry: Part 4. Temperature and envelope material dependent emission characteristics. J Photochem Photobiol A 158:1–5. https://doi.org/10.1016/S1010-6030(03)00101-1

    CAS  Article  Google Scholar 

  146. Müler P, Klán P, Církva V (2005) The electrodeless discharge lamp: a prospective tool for photochemistry. Part 5: fill material-dependent emission characteristics. J Photochem Photobiol A 171:51–57. https://doi.org/10.1016/j.jphotochem.2004.09.007

    CAS  Article  Google Scholar 

  147. Nascimento UM, Azevedo EB (2013) Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation. J Environ Sci Health A Tox Hazard Subst Environ Eng 48(9):1056–1072. https://doi.org/10.1080/10934529.2013.773822

    CAS  Article  Google Scholar 

  148. Nidheesh PV, Gandhimathi R (2014a) Comparative removal of Rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes. Clean Soil Air Water 42(6):779–784. https://doi.org/10.1002/clen.201300093

    CAS  Article  Google Scholar 

  149. Nidheesh PV, Gandhimathi R (2014b) Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process. Environ Sci Pollut Res 21:8585–8594. https://doi.org/10.1007/s11356-014-2775-1

    CAS  Article  Google Scholar 

  150. Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschlager W (2003) Review: microwave-assisted chemical reactions. Chem Eng Technol 26:1207–1216. https://doi.org/10.1002/ceat.200301836

    CAS  Article  Google Scholar 

  151. Nuengmatcha P, Chanthai S, Mahachai R, Oh WC (2016) Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J Environ Chem Eng 4(2):2170–2177. https://doi.org/10.1016/j.jece.2016.03.045

    CAS  Article  Google Scholar 

  152. Oncu NB, Balcioglu IA (2013) Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization. Bioresour Technol 146:126–134. https://doi.org/10.1016/j.biortech.2013.07.043

    CAS  Article  Google Scholar 

  153. Osman H, Su Z, Ma X (2017) Efficient photocatalytic degradation of Rhodamine B dye using ZnO/graphitic C3N4 nanocomposites synthesized by microwave. Environ Chem Lett 15(3):435–441. https://doi.org/10.1007/s10311-017-0604-8

    CAS  Article  Google Scholar 

  154. Pan F, Luo Y, Zhang LR, Fu J (2011) Degradation of reactive brilliant red X-3B by zero-valent iron/activated carbon system in the presence of microwave irradiation. Water Sci Technol 64(12):2345–2351. https://doi.org/10.2166/wst.2011.827

    CAS  Article  Google Scholar 

  155. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. https://doi.org/10.1021/cr9001319

    CAS  Article  Google Scholar 

  156. Park SH, Kim SJ, Seo SG, Jung SC (2010) Assessment of microwave/UV/O3 in the photo-catalytic degradation of Bromothymol Blue in aqueous nano TiO2 particles dispersions. Nanoscale Res Lett 5:1627–1632. https://doi.org/10.1007/s11671-010-9686-y

    CAS  Article  Google Scholar 

  157. Parolin F, Nascimento UM, Azevedo EB (2013) Microwave-enhanced UV/H2O2 degradation of an azo dye (tartrazine): optimization, colour removal, mineralization and ecotoxicity. Environ Technol 34(10):1247–1253. https://doi.org/10.1080/09593330.2012.744431

    CAS  Article  Google Scholar 

  158. Patil NN, Shukla SR (2015) Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. J Water Process Eng 7:314–327. https://doi.org/10.1016/j.jwpe.2015.08.003

    Article  Google Scholar 

  159. Pedro JS, Valente S, Padilha PM, Florentino AO (2006) Studies in the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere 64(7):1128–1133. https://doi.org/10.1016/j.chemosphere.2005.11.050

    CAS  Article  Google Scholar 

  160. Pouran SR, Aziz AA, Daud WM (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69. https://doi.org/10.1016/j.jiec.2014.05.005

    CAS  Article  Google Scholar 

  161. Purkait M, DasGupta S, De S (2005) Adsorption of eosin dye on activated carbon and its surfactant based desorption. J Environ Manag 76(2):135–142. https://doi.org/10.1016/j.jenvman.2005.01.012

    CAS  Article  Google Scholar 

  162. Qu D, Qiang Z, Xiao S, Liu Q, Lei Y, Zhou T (2014) Degradation of Reactive Black 5 in a submerged photocatalytic membrane distillation reactor with microwave electrodeless lamps as light source. Sep Purif Technol 122:54–59. https://doi.org/10.1016/j.seppur.2013.11.004

    CAS  Article  Google Scholar 

  163. Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238. https://doi.org/10.1080/10643380590917932

    CAS  Article  Google Scholar 

  164. Rǎileanu M, Crişan M, Niţoi I et al (2013) TiO2-based nanomaterials with photocatalytic properties for the advanced degradation of xenobiotic compounds from water. A literature survey. Water Air Soil Pollut 224(6):1548-1–1548-45. https://doi.org/10.1007/s11270-013-1548-7

    CAS  Article  Google Scholar 

  165. Ramos DD, Bezerra PCS, Quina FH et al (2015) Synthesis and characterization of TiO2 and TiO2/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis. Environ Sci Pollut Res 22:774–783. https://doi.org/10.1007/s11356-014-2678-1

    CAS  Article  Google Scholar 

  166. Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14:487–494. https://doi.org/10.1007/s10311-016-0586-y

    CAS  Article  Google Scholar 

  167. Ranjan S, Dasgupta N, Rajendran B, Avadhani GS, Ramalingam C, Kumar A (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23:12287–12302. https://doi.org/10.1007/s11356-016-6440-8

    CAS  Article  Google Scholar 

  168. Rayaroth MP, Aravind UK, Aravindakumar CT (2016) Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett 14:259–290. https://doi.org/10.1007/s10311-016-0568-0

    CAS  Article  Google Scholar 

  169. Remya N, Lin JG (2011) Current status of microwave application in wastewater treatment—a review. Chem Eng J 166(3):797–813. https://doi.org/10.1016/j.cej.2010.11.100

    CAS  Article  Google Scholar 

  170. Riaz U, Ashraf SM, Aqib M (2014) Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst. Arab J Chem 7(1):79–86. https://doi.org/10.1016/j.arabjc.2013.07.001

    CAS  Article  Google Scholar 

  171. Riaz U, Ashraf SM, Ruhela A (2015) Catalytic degradation of orange G under microwave irradiation with a novel nanohybrid catalyst. J Environ Chem Eng 3:20–29. https://doi.org/10.1016/j.jece.2014.06.010

    CAS  Article  Google Scholar 

  172. Riaz U, Ashraf SM, Budhiraja V, Aleem S, Kashyap J (2016) Comparative studies of the photocatalytic and microwave–assisted degradation of alizarin red using ZnO/poly (1-naphthylamine) nanohybrids. J Mol Liq 216:259–267. https://doi.org/10.1016/j.molliq.2016.01.018

    CAS  Article  Google Scholar 

  173. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    CAS  Article  Google Scholar 

  174. Saez C, Panizza M, Rodrigo MA, Cerisola G (2007) Electrochemical incineration of dyes using a boron-doped diamond anode. J Chem Technol Biotechnol 82:575–581. https://doi.org/10.1002/jctb.1703

    CAS  Article  Google Scholar 

  175. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019

    CAS  Article  Google Scholar 

  176. Samanta SK, Basak T, Sengupta B (2008) Theoretical analysis on microwave heating of oil-water emulsions supported on ceramic, metallic or composite plates. Int J Heat Mass Transf 51:6136–6156. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.003

    CAS  Article  Google Scholar 

  177. Sanz J, Lombrana JI, De Luis AM, Ortueta M, Varona F (2003) Microwave and Fenton’s reagent oxidation of wastewater. Environ Chem Lett 1(1):45–50. https://doi.org/10.1007/s10311-002-0007-2

    CAS  Article  Google Scholar 

  178. Serpone N, Horikoshi S, Emeline AV (2010) Microwaves in advanced oxidation processes for environmental applications. A brief review. J Photochem Photobiol C Photochem Rev 11(2–3):114–131. https://doi.org/10.1016/j.jphotochemrev.2010.07.003

    CAS  Article  Google Scholar 

  179. Shen D, Fan J, Zhou W, Gao B, Yue Q, Kang Q (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172:99–107. https://doi.org/10.1016/j.jhazmat.2009.06.139

    CAS  Article  Google Scholar 

  180. Shi BY, Li GH, Wang DS, Feng CH, Tang HX (2007) Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J Hazard Mater 143:567–574. https://doi.org/10.1016/j.jhazmat.2006.09.076

    CAS  Article  Google Scholar 

  181. Shi W, Li Q, An S, Zhang T, Zhang L (2016) Magnetic nanosized calcium ferrite particles for efficient degradation of crystal violet using a microwave-induced catalytic method: insight into the degradation pathway. J Chem Technol Biotechnol 91:367–374. https://doi.org/10.1002/jctb.4578

    CAS  Article  Google Scholar 

  182. Shiying Y, Ping W, Xin Y, Guang W, Zhang W, Liang S (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. J Environ Sci 21:1175–1180. https://doi.org/10.1016/S1001-0742(08)62399-2

    CAS  Article  Google Scholar 

  183. Shukla S, Oturan MA (2015) Dye removal using electrochemistry and semiconductor oxide nanotubes. Environ Chem Lett 13:157–172. https://doi.org/10.1007/s10311-015-0501-y

    CAS  Article  Google Scholar 

  184. Singh S, Lien S, Chandra V, Devidas A (2016) Comparative study of electrochemical oxidation for dye degradation: parametric optimization and mechanism identification. J Environ Chem Eng 4(3):2911–2921. https://doi.org/10.1016/j.jece.2016.05.036

    CAS  Article  Google Scholar 

  185. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367. https://doi.org/10.1007/s11356-014-2783-1

    CAS  Article  Google Scholar 

  186. Srinivasan A, Liao PH, Lo KV (2016) Microwave treatment of dairy manure for resource recovery: reaction kinetics and energy analysis. J Environ Sci Health B 51(12):840–846. https://doi.org/10.1080/03601234.2016.1208464

    CAS  Article  Google Scholar 

  187. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632. https://doi.org/10.1016/j.cej.2015.11.046

    CAS  Article  Google Scholar 

  188. Stockinger H, Heinzle E, Kut O (1995) Removal of chloro and nitro aromatic wastewater pollutants by ozonation and biotreatment. Environ Sci Technol 29:2016–2022. https://doi.org/10.1021/es00008a021

    CAS  Article  Google Scholar 

  189. Tandon PK, Singh SB (2016) Redox processes in water remediation. Environ Chem Lett 14:15–25. https://doi.org/10.1007/s10311-015-0540-4

    CAS  Article  Google Scholar 

  190. Tezcanli-Güyer G, Ince NH (2004) Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42:603–609. https://doi.org/10.1016/j.ultras.2004.01.096

    CAS  Article  Google Scholar 

  191. Trinidad CS, Cruz AM, Cuéllar EL (2015) Photocatalytic degradation of indigo carmine by hydrothermally synthesized Bi2MoO6 in presence of EDTA. Environ Sci Pollut Res 22:792–799. https://doi.org/10.1007/s11356-014-3004-7

    CAS  Article  Google Scholar 

  192. Tripathy BK, Kumar M (2017) Suitability of microwave and microwave-coupled systems for landfill leachate treatment: an overview. J Environ Chem Eng 5:6165–6178. https://doi.org/10.1016/j.jece.2017.11.039

    CAS  Article  Google Scholar 

  193. Tyagi VK, Lo SL (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10(3):215–242. https://doi.org/10.1007/s11157-011-9244-9

    CAS  Article  Google Scholar 

  194. Tyagi VK, Lo SL (2013) Microwave irradiation: a sustainable way for sludge treatment and resource recovery. Renew Sustain Energy Rev 18(71):288–305. https://doi.org/10.1016/j.rser.2012.10.032

    CAS  Article  Google Scholar 

  195. Üstün GE, Solmaz SKA, Birgül A (2007) Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange—a case study. Resour Conserv Recycl 52:425–440. https://doi.org/10.1016/j.resconrec.2007.05.006

    Article  Google Scholar 

  196. Vakili M, Rafatullah M, Salamatinia B et al (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130. https://doi.org/10.1016/j.carbpol.2014.07.007

    CAS  Article  Google Scholar 

  197. Varadarajan G, Venkatachalam P (2016) Sustainable textile dyeing processes. Environ Chem Lett 14:113–122. https://doi.org/10.1007/s10311-015-0533-3

    CAS  Article  Google Scholar 

  198. Vasudevan S, Oturan MA (2014) Electrochemistry: as cause and cure in water pollution—an overview. Environ Chem Lett 12:97–108. https://doi.org/10.1007/s10311-013-0434-2

    CAS  Article  Google Scholar 

  199. Veksha A, Pandya P, Hill JM (2015) The removal of methyl orange from aqueous solution by biochar and activated carbon under microwave irradiation and in the presence of hydrogen peroxide. J Environ Chem Eng 3(3):1452–1458. https://doi.org/10.1016/j.jece.2015.05.003

    CAS  Article  Google Scholar 

  200. Verma P, Kumar J (2014) Degradation and microbiological validation of meropenem antibiotic in aqueous solution using UV, UV/H2O2, UV/TiO2 and UV/TiO2/H2O2 processes. Int J Eng Res Appl 4:58–65

    Google Scholar 

  201. Verma P, Samanta SK (2017) Degradation kinetics of pollutants present in a simulated wastewater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment. Res Chem Intermed 43:6317–6341. https://doi.org/10.1007/s11164-017-2992-6

    CAS  Article  Google Scholar 

  202. Verma P, Samanta SK (2018a) Facile synthesis of TiO2-PC composites for enhanced photocatalytic abatement of multiple pollutant dye mixtures: a comprehensive study on the kinetics, mechanism, and effects of environmental factors. Res Chem Intermed 44:1963–1988. https://doi.org/10.1007/s11164-017-3209-8

    CAS  Article  Google Scholar 

  203. Verma P, Samanta SK (2018b) A novel UV-C/XOH (X = Na or K) based highly alkaline advanced oxidation process (HA-AOP) for degradation of emerging micropollutants. ChemRxiv. https://doi.org/10.26434/chemrxiv.5777379.v1

    Article  Google Scholar 

  204. Vilar VJP, Malato S, Dionysiou DD (2015) Advanced oxidation technologies: advances and challenges in Iberoamerican countries. Environ Sci Pollut Res 22:759–761. https://doi.org/10.1007/s11356-014-3160-9

    Article  Google Scholar 

  205. Wang Y, Zhao H, Gao J, Zhao G, Zhang Y, Zhang Y (2012) Rapid mineralization of azo-dye wastewater by microwave synergistic electro-fenton oxidation process. J Phys Chem C 116(13):7457–7463. https://doi.org/10.1021/jp212590f

    CAS  Article  Google Scholar 

  206. Wang X, Mei L, Xing X et al (2014) Mechanism and process of methylene blue degradation by manganese oxides under microwave irradiation. Appl Catal B Environ 160–161:211–216. https://doi.org/10.1016/j.apcatb.2014.05.009

    CAS  Article  Google Scholar 

  207. Wang Y, Xiao Q, Liu J, Yan H, Wei Y (2015) Pilot-scale study of sludge pretreatment by microwave and sludge reduction based on lysis–cryptic growth. Bioresour Technol 190:140–147. https://doi.org/10.1016/j.biortech.2015.04.046

    CAS  Article  Google Scholar 

  208. Wong WT, Chan WI, Liao PH, Lo KV (2006) A hydrogen peroxide/microwave advanced oxidation process for sewage sludge treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(11):2623–2633. https://doi.org/10.1080/10934520600928086

    CAS  Article  Google Scholar 

  209. Wu CH, Ng HY (2008) Degradation of CI Reactive Red 2 (RR2) using ozone-based systems: comparisons of decolorization efficiency and power consumption. J Hazard Mater 152:120–127. https://doi.org/10.1016/j.jhazmat.2007.06.073

    CAS  Article  Google Scholar 

  210. Wu CH, Lai CH, Chung WY (2013) Electrical energy per order and photodegradation efficiency of advanced oxidation processes. Appl Mech Mater 291–294:764–767. https://doi.org/10.4028/www.scientific.net/AMM.291-294.764

    CAS  Article  Google Scholar 

  211. Xiao J, Fang X, Yang S, He H, Sun C (2015) Microwave-assisted heterogeneous catalytic oxidation of high-concentration Reactive yellow 3 with CuFe2O4/PAC. J Chem Technol Biotechnol 90:1861–1868. https://doi.org/10.1002/jctb.4497

    CAS  Article  Google Scholar 

  212. Xiao R, Luo Z, Wei Z, Luo S, Spinney R, Yang W, Dionysiou DD (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng 19:51–58. https://doi.org/10.1016/j.coche.2017.12.005

    Article  Google Scholar 

  213. Xu D, Zhang Y, Cheng F, Dai P (2016) Efficient removal of dye from an aqueous phase using activated carbon supported ferrihydrite as heterogeneous Fenton-like catalyst under assistance of microwave irradiation. J Taiwan Inst Chem Eng 60:376–382. https://doi.org/10.1016/j.jtice.2015.10.036

    CAS  Article  Google Scholar 

  214. Xu D, Lai X, Guo W, Dai P (2017) Microwave-assisted catalytic degradation of methyl orange in aqueous solution by ferrihydrite/maghemite nanoparticles. J Water Process Eng 16:270–276. https://doi.org/10.1016/j.jwpe.2017.02.010

    Article  Google Scholar 

  215. Xue XY, Cheng R, Shi L, Ma Z, Zheng X (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27. https://doi.org/10.1007/s10311-016-0595-x

    CAS  Article  Google Scholar 

  216. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    CAS  Article  Google Scholar 

  217. Yavuz Y, Shahbazi R, Koparal AS, Öğütveren ÜB (2014) Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environ Sci Pollut Res 21(14):8603–8609. https://doi.org/10.1007/s11356-014-2789-8

    CAS  Article  Google Scholar 

  218. Yin GQ, Liao PH, Lo KV (2008) Sewage sludge treatment using microwave-enhanced advanced oxidation process. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(2):191–201. https://doi.org/10.1080/10934520701781590

    CAS  Article  Google Scholar 

  219. Yin J, Cai J, Yin C, Gao L, Zhou J (2016) Degradation performance of crystal violet over CuO@AC and CeO2–CuO@AC catalysts using microwave catalytic oxidation degradation method. J Environ Chem Eng 4(1):958–964. https://doi.org/10.1016/j.jece.2016.01.001

    CAS  Article  Google Scholar 

  220. You KF, Fang JH, Qian QL (2013) Treatment of the weak acid brilliant red B dyeing wastewater by microwave enhanced Fenton oxidation. Wool Text J 41:53–56

    CAS  Google Scholar 

  221. Yu Y, Chan WI, Liao PH, Lo KV (2010) Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. J Hazard Mater 181:1143–1147. https://doi.org/10.1016/j.jhazmat.2010.05.134

    CAS  Article  Google Scholar 

  222. Zhang XW, Wang YZ, Li GT (2005) Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst. J Mol Catal A Chem 237:199–205. https://doi.org/10.1016/j.molcata.2005.03.043

    CAS  Article  Google Scholar 

  223. Zhang XW, Wang YZ, Li GT, Qu J (2006) Oxidative decomposition of azo dye C.I. acid orange 7 (AO7) under microwave electrodeless lamp irradiation in the presence of H2O2. J Hazard Mater 134:183–189. https://doi.org/10.1016/j.jhazmat.2005.10.046

    CAS  Article  Google Scholar 

  224. Zhang XW, Li GT, Wang YZ (2007a) Microwave assisted photocatalytic degradation of high concentration azo dye reactive brilliant red X-3B with microwave electrodeless lamp as light source. Dyes Pigments 74:536–544. https://doi.org/10.1016/j.dyepig.2006.03.012

    CAS  Article  Google Scholar 

  225. Zhang Z, Shan Y, Wang J, Ling H, Zang S, Gao W, Zhao A, Zhang H (2007b) Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. J Hazard Mater 147:325–333. https://doi.org/10.1016/j.jhazmat.2006.12.083

    CAS  Article  Google Scholar 

  226. Zhang L, Su M, Guo X (2008a) Studies on the treatment of brilliant green solution by combination microwave induced oxidation with CoFe2O4. Sep Purif Technol 62:458–463. https://doi.org/10.1016/j.seppur.2008.02.022

    CAS  Article  Google Scholar 

  227. Zhang XW, Sun DD, Li GT, Wang YZ (2008b) Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp. J Photochem Photobiol A 199:311–315. https://doi.org/10.1016/j.jphotochem.2008.06.009

    CAS  Article  Google Scholar 

  228. Zhang L, Liu X, Guo X, Su M, Xu T, Song X (2011) Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chem Eng J 173:737–742. https://doi.org/10.1016/j.cej.2011.08.041

    CAS  Article  Google Scholar 

  229. Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z et al (2012) Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). J Hazard Mater 209–210:271–277. https://doi.org/10.1016/j.jhazmat.2012.01.021

    CAS  Article  Google Scholar 

  230. Zhang F, Zhou T, Liu Y, Leng J (2015) Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci Rep 5:11152. https://doi.org/10.1038/srep11152

    Article  Google Scholar 

  231. Zhang X, Ding Z, Yang J, Cizmas L, Lichtfouse E, Sharma VK (2018) Efficient microwave degradation of humic acids in water using persulfate and activated carbon. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0721-z

    Article  Google Scholar 

  232. Zhao G, Gao J, Shi W, Liu M, Li D (2009) Electrochemical incineration of high concentration azo dye wastewater on the in situ activated platinum electrode with sustained microwave radiation. Chemosphere 77:188–193. https://doi.org/10.1016/j.chemosphere.2009.07.044

    CAS  Article  Google Scholar 

  233. Zheng H, Zhang H, Sun X, Zhang P, Tshukudu T, Zhu G (2010) The catalytic oxidation of malachite green by the microwave-Fenton processes. Water Sci Technol 62:1304–1311. https://doi.org/10.2166/wst.2010.411

    CAS  Article  Google Scholar 

  234. Zhihui A, Peng Y, Xiaohua L (2005) Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes. Chemosphere 60:824–827. https://doi.org/10.1016/j.chemosphere.2005.04.027

    CAS  Article  Google Scholar 

  235. Zhong H, Shaogui Y, Yongming J, Cheng S (2009) Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication. J Environ Sci 21:268–272. https://doi.org/10.1016/S1001-0742(08)62262-7

    CAS  Article  Google Scholar 

  236. Zhou Y, Liang Z, Wang Y (2008) Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate. Desalination 225:301–311. https://doi.org/10.1016/j.desal.2007.07.010

    CAS  Article  Google Scholar 

  237. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555. https://doi.org/10.1021/cr400366s

    CAS  Article  Google Scholar 

  238. Zuo R, Du G, Zhang W, Liu L, Liu Y, Mei L, Li Z (2014) Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv Mater Sci Eng 2014:170148. https://doi.org/10.1155/2014/170148

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Indian Institute of Technology Delhi for providing some required soft information for this study. The authors would also like to express their regard and appreciation to the research community whose scientific data and research findings as published in their referred studies have been used to add a great value and substance to this review article. Finally, the authors are very grateful to the anonymous reviewers and Prof. Eric Lichtfouse, Chief Editor of Environmental Chemistry Letters for their constructive comments/suggestions that have benefitted us substantially to improvise the quality of this review article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Samanta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

C.I. or Color Index: Color index is a most definitive and reliable way to identify dyes. It is basically a summation of dyes. Since the chemical and common names of dyes are very diverse, complicated and confusing, the importance of using a unique and informative name has become quite essential. This requirement has prompted the need of Color Index. As per the Color Index, the dyes can be uniquely listed in accordance with the system of Color Index Generic Names and Color Index Constitution Numbers. In Color Index Generic Names, each dye has been given a unique generic name that gives information about application type, hue and identifying number, whereas in Color Index Constitution Numbers, each dye with known structure has been given a unique 5-digit number to avoid any confusion with other related dyes.

For example: Tartrazine is a commercial and common name of a dye. Its Color Index Generic Name is C.I. Acid Yellow 23; where ‘Acid’ defines its application type, ‘Yellow’ defines its hue, and ‘23’ is its identifying number. In addition, its Color Index Constitution Number is C.I. 19140.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Samanta, S.K. Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environ Chem Lett 16, 969–1007 (2018). https://doi.org/10.1007/s10311-018-0739-2

Download citation

Keywords

  • Microwave
  • Advanced oxidation processes (AOPs)
  • Dyes
  • Microwave-enhanced processes
  • Wastewater treatment
  • Cost analysis