Humic-like substances global levels and extraction methods in aerosols


The abundance of humic-like substances in the atmosphere has received considerable attention since these substances play an important role in various atmospheric processes. The wide variety of quantitative techniques used to study humic-like substances produce dissimilar results, making data comparison difficult. Also, global background concentrations and the transfer of atmospheric humic-like substances are poorly known. Here, we compared resins to extract humic-like substances in aerosols, and we measured contents in aerosols from Mt. Fuji. Results show that diethylaminoethyl cellulose resins extracted more humic-like substances than the diethylaminoethyl resin (hydroxylated methacrylic polymer). The mean humic-like substances concentrations in the free troposphere in East Asia is similar to that in Europe, suggesting that the global background level of humic-like substances is 0.05 μg C m−3, based on the humic-like substances concentrations on Mt. Fuji and Mt. Sonnblick. Humic-like substances concentrations, especially fulvic acids concentration, at the summit of Mt. Fuji increased when air masses came from the continent along with the carbon monoxide and ozone.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Baduel C, Voisin D, Jaffezo JL (2009) Comparison of analytical methods for humic like substances (HULIS) measurements in atmospheric particles. Atmos Chem Phys 9:5949–5962.

    Article  CAS  Google Scholar 

  2. Decesari S, Facchini MC, Matta E, Mircea M, Fuzzi S, Chughtai AR, Smith DM (2002) Water soluble organic compounds formed by oxidation of soot. Atmos Environ 36:1827–1832.

    Article  CAS  Google Scholar 

  3. Feczko T, Puxbaum H, Kasper-Giebl A, Handler M, Limbeck A, Gelencsér A, Legrand M (2007) Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. J Geophys Res Atmos 112:1–9.

    Article  CAS  Google Scholar 

  4. Kato S, Shiobara Y, Uchiyama K, Miura K, Okochi H, Kobyashi H, Hatakeyama S (2016) Atmospheric CO, O3, and SO2 measurement at the summit of Mt. Fuji during the summer of 2013. Aerosol Air Qual Res 16:2368–2377.

    Article  CAS  Google Scholar 

  5. Katsumi N, Yonebayashi K, Okazaki M (2015) Aluminum complexation by soil humic acids, with special reference to chelating ability. Pedologist 59:2–11.

    CAS  Article  Google Scholar 

  6. Katsumi N, Miyake S, Okochi H (2018) Chemical structural features of humic-like substances (HULIS) in urban atmospheric aerosols collected from central Tokyo with special reference to nuclear magnetic resonance spectra. Asian J Atmos Environ 12:153–164.

    Article  Google Scholar 

  7. Kiss G, Varga B, Galambos I, Ganszky I (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J Geophys Res Atmos 107:D21.

    Article  CAS  Google Scholar 

  8. Okochi H, Sato E, Matsubayashi Y, Igawa M (2008) Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water. Atmos Res 87:213–223.

    Article  CAS  Google Scholar 

  9. Park SS, Yu J (2016) Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmos Environ 136:114–122.

    Article  CAS  Google Scholar 

  10. Salma I, Salma I, Ocskay R, Chi X et al (2007) Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmos Environ 41:4106–4118.

    Article  CAS  Google Scholar 

  11. Salma I, Meszaros T, Maenhaut W, Vass E, Majer Z (2010) Chirality and the origin of atmospheric humic-like substances. Atmos Chem Phys 10:1315–1327.

    Article  CAS  Google Scholar 

  12. Scheinhardt S, Muller K, Spindler G, Herrmann H (2013) Complexation of trace metals in size-segregated aerosol particles at nine sites in Germany. Atmos Environ 74:102–109.

    Article  CAS  Google Scholar 

  13. Song J, He L, Peng P, Zhao J, Ma S (2012) Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China. Aerosol Sci Technol 46:533–546.

    Article  CAS  Google Scholar 

  14. Sun J, Ariya PA (2006) Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos Environ 40:795–920.

    Article  CAS  Google Scholar 

  15. Tan J, Xiang P, Duan J, Ma Y, He K, Cheng Y, Yu J, Querol X (2016) Chemical characterization of humic-like substances (HULIS) in PM2.5 in Lanzhou, China. Sci Total Environ 573:1481–1490.

    Article  CAS  Google Scholar 

  16. Wada R, Sadanaga Y, Kato S, Katsumi N, Okochi H, Iwamoto Y, Miura K, Kobayashi H, Kamogawa M, Matsumoto J, Yonemura S, Matumi Y, Kajino M, Hatakeyama S (2018) Atmospheric CO, O3, and SO2 measurement at the summit of Mt. Fuji during the summer of 2013. Bunseki Kagaku 67:333–340. (in Japanese with English summary)

    Article  CAS  Google Scholar 

  17. Wang B, Knopf DA (2011) Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3. J Geophys Res Atmos 116:1–14.

    Article  Google Scholar 

  18. Zheng G, He K, Duan F, Cheng Y, Ma Y (2013) Measurement of humic-like substances in aerosols: a review. Environ Pollut 181:301–314.

    Article  CAS  Google Scholar 

Download references


This research was carried out by cooperation from the NPO Mount Fuji Research Station (MFRS) and supported by Grant-in-Aid for Scientific Research (No. 16K21427) from the Japan Society for the Promotion of Science and Waseda University Grant for Special Research Projects (Project Number: 2016S-068).

Author information



Corresponding author

Correspondence to Naoya Katsumi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katsumi, N., Miyake, S., Okochi, H. et al. Humic-like substances global levels and extraction methods in aerosols. Environ Chem Lett 17, 1023–1029 (2019).

Download citation


  • Diethylaminoethyl resin
  • Free troposphere
  • Humic-like substances
  • Water-soluble organic carbon