Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 2, pp 647–652 | Cite as

Sulfate pollution: evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate

  • Karla C. de F. Araújo
  • Jéssica P. de P. Barreto
  • Jussara C. Cardozo
  • Elisama Vieira dos Santos
  • Danyelle M. de Araújo
  • Carlos A. Martínez-Huitle
Original Paper

Abstract

There is increasing concern about contamination by surfactants that are used to extract organic pollutants during remediation of polluted soils and aquifers. For instance, the surfactant sodium dodecyl sulfate may produce sulfate, which is a pollutant at high concentrations. Reports suggest that when remediation involves sodium dodecyl sulfate and electrochemical treatments, SO 4 2− ions could be produced then oxidized to persulfate (S2O 8 2− ). However, there is few knowledge on the mechanism of electrochemical production of sulfate and persulfate. Here, we tested for first time the electrochemical production of persulfate from sulfate released by oxidation of sodium dodecyl sulfate, using anodic oxidation with boron-doped diamond. Results show a high efficiency of persulfate production, reaching 2.5 μM, when 500 mg/L of surfactant in 0.05 mol/L of Na2SO4 was electrolyzed at 60 mA cm−2, by comparison with only 0.7 μM of persulfate without surfactant in solution. This efficiency is explained by electrogeneration of hydroxyl radicals and persulfate. Results also show that 97% of the surfactant is transformed by fragmentation and oxidation, as revealed by particle size measurements.

Keywords

Persulfate Diamond electrode Surfactant Sodium dodecyl sulfate Sulfate release 

Notes

Acknowledgments

Financial support from National Council for Scientific and Technological Development (CNPq—465571/2014-0; 446846/2014-7 and 401519/2014-7) and Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (2014/50945-4) is gratefully acknowledged.

References

  1. Araújo DM, Sáez C, Martinez-Huitle CA, Canizares P, Rodrigo MA (2015) Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Appl Catal B Environ 166–167:454–459.  https://doi.org/10.1016/j.apcatb.2014.11.038 CrossRefGoogle Scholar
  2. Bandala ER, Pelaez MA, Dionysios DD, Gelover G, Garcia AJ, Macías D (2007) Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process. J Photochem Photobiol A Chem 186:357–363.  https://doi.org/10.1016/j.jphotochem.2006.09.005 CrossRefGoogle Scholar
  3. Barreto JPP, Araújo KCF, Araújo DM, Martínez-Huitle CA (2015) Effect of sp3/sp2 ratio on boron doped diamond films for producing persulfate. ECS Electrochem Lett 4:E9–E11.  https://doi.org/10.1149/2.0061512eel CrossRefGoogle Scholar
  4. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  5. Budaev SL, Batoeva AA, Tsybikova BA (2015) Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion. Miner Eng 8:88–95.  https://doi.org/10.1016/j.mineng.2015.07.010 CrossRefGoogle Scholar
  6. Cañizares P, Saéz C, Sánchez-Carretero A, Rodrigo MA (2008) Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. Electrochem Commun 10:602–606.  https://doi.org/10.1016/j.elecom.2008.01.038 CrossRefGoogle Scholar
  7. Chen WS, Su YC (2012) Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrason Sonochem 19:921–927.  https://doi.org/10.1016/j.ultsonch.2011.12.012 CrossRefGoogle Scholar
  8. Davis J, Baygents JC, Farrell J (2014) Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta 150:68–74.  https://doi.org/10.1016/j.electacta.2014.10.104 CrossRefGoogle Scholar
  9. Fan G, Cang L, Gomes HI, Zhou D (2015) Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of different activation methods. Chemosphere 144:138–147.  https://doi.org/10.1016/j.chemosphere.2015.08.074 CrossRefGoogle Scholar
  10. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution, Secound edn. Wiley, England. ISBN 978-0-471-49883-4CrossRefGoogle Scholar
  11. Jurado E, Fernández-Serrano M, Núñez-Olea J, Luzón G, Lechuga M (2006) Simplified spectrophotometric method using methylene blue for determining anionic surfactants: applications to the study of primary biodegradation in aerobic screening test. Chemosphere 65:278–285.  https://doi.org/10.1016/j.chemosphere.2006.02.044 CrossRefGoogle Scholar
  12. Liang C, Huang CF, Mohanty N, Kurakalva RM (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540–1543.  https://doi.org/10.1016/j.chemosphere.2008.08.043 CrossRefGoogle Scholar
  13. Maniasso N (2001) Ambientes micelares em química analítica. Quím Nova 24:87–93.  https://doi.org/10.1590/S0100-40422001000100015 CrossRefGoogle Scholar
  14. Michaud PA, Mahe E, Haenni W, Perret A, Comninellis C (2000) Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem Solid State Lett 3:77–79.  https://doi.org/10.1149/1.1390963 CrossRefGoogle Scholar
  15. Santos EV, Sáez C, Martinez-Huitle CA, Cañizares P, Rodrigo MA (2015a) Combined soil washing and CDEO for the removal of atrazine from soils. J Hazard Mater 300:129–134.  https://doi.org/10.1016/j.jhazmat.2015.06.064 CrossRefGoogle Scholar
  16. Santos EV, Sáez C, Martinez-Huitle CA, Canizares P, Rodrigo MA (2015b) The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. Electrochem Commun 55:26–29.  https://doi.org/10.1016/j.elecom.2015.03.003 CrossRefGoogle Scholar
  17. Serrano K, Michaud P, Michaud C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48:431–436.  https://doi.org/10.1016/S0013-4686(02)00688-6 CrossRefGoogle Scholar
  18. Xie P, Ma J, Liu W, Zou J, Yue S, Wiesner MR, Fang J (2014) Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. Water Res 69:223–233.  https://doi.org/10.1016/j.watres.2014.11.029 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Karla C. de F. Araújo
    • 1
  • Jéssica P. de P. Barreto
    • 1
  • Jussara C. Cardozo
    • 1
  • Elisama Vieira dos Santos
    • 1
  • Danyelle M. de Araújo
    • 1
  • Carlos A. Martínez-Huitle
    • 1
    • 2
  1. 1.Institute of ChemistryFederal University of Rio Grande do Norte, Lagoa NovaNatalBrazil
  2. 2.National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of ChemistryUnespAraraquaraBrazil

Personalised recommendations