Abstract
In recent years, there has been a wide research in supported single-atom catalysts (SACs), which contain only isolated individual metal atoms dispersed on an appropriate support or coordinated with the surface atoms of the support. The SACs exhibit many fascinating characteristics including high activity, selectivity, and maximum atomic utilization. These characteristics arise from the low coordination status, quantum size effect, and the strong metal–support interaction, which have proved to be very powerful in many typical heterogeneous catalysis field including oxidation, hydrogenation, the water–gas shift reaction, methanol steam reforming, electrocatalysis, and photocatalysis. In this review, we summarized the recent progress in synthesis, characterizations, properties, and applications of SACs.
This is a preview of subscription content, access via your institution.

Adapted from Xiang-Kui et al. (2014)

Adapted from Dvořák et al. (2016)

Adapted from Aich et al. (2015)

Adapted from Huan et al. (2015)

Adapted from Gao et al. (2016)

Adapted from Wei et al. (2014)

Adapted from Lang et al. (2016)

Adapted from Ja et al. (2009)

Adapted from Neitzel et al. (2016)

Adapted from Qiao et al. (2011)

Adapted from Melanie et al. (2013)

Adapted from Long et al. (2016)

Adapted from Narula et al. (2014)

Adapted from Huan et al. (2015)

Adapted from Sara et al. (2014)

Adapted from Xiang-Kui et al. (2014)

Adapted from Choi et al. (2016)

Adapted from Xiaogang et al. (2016)
References
Abbet AS, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rolsch N (2000) Acetylene cyclotrimerization on supported size-selected Pd n clusters (1 < n < 30): one atom is enough! J Am Chem Soc 122:3453–3457. https://doi.org/10.1021/ja9922476
Aich P, Wei H, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R (2015) Single-atom alloy Pd–Ag catalyst for selective hydrogenation of acrolein. J Phys Chem C 119:18140–18148. https://doi.org/10.1021/acs.jpcc.5b01357
Albert B, Yaroslava L, Iva M, Armin N, Tomas S, Nataliya T, Mykhailo V, Vitalii S, Klara S, Josef M, Roman F, Michal V, Kevin CP, Stephanie B, Valerie P, Francesc I, Vladimr M, Jçrg L, Konstantin MN (2014) Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew Chem Int Ed 53:10525–10530. https://doi.org/10.1002/anie.201402342
Aleksandrov HA, Neyman KM, Vayssilov GN (2015) The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Phys Chem Chem Phys 17:14551–14560. https://doi.org/10.1039/c5cp01685a
Alex WR, Yung-Chang L, Shanshan W, Hidetaka S, Christopher SA, Qu C, Sungwoo L, Gun DL, Joohee L, Seungwu H, Euijoon Y, Angus IK, Heeyeon K, Kazu S, Jamie HW (2016) Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano 10:10227–10236. https://doi.org/10.1021/acsnano.6b05674
Alexeev O, Gates BC (2000) EXAFs characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top Catal 10:273–293. https://doi.org/10.1023/a:1019184605678
Benjamin ES, Jennifer KE, Philip L, Albert FC, Andrew H, Christopher JK, Hutchings Graham J (2006) Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au–Pd catalysts. Chem Mater 18:2689–2695. https://doi.org/10.1021/cm052633o
Benjamin M, Henry CA, Chaohui G, Sandy MK, Perrin ES, Jennifer MR, Howie C, Richard WB, Daniel IG (2016) Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science 353:154–159. https://doi.org/10.1126/science.aaf0984
Bing H, Botao Q, Aiqin W, Tao Z (2017) Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin J Catal. https://doi.org/10.1016/S1872-2067(17)62872-9
Botao Q, Jiaxin L, Yang-Gang W, Qingquan L, Xiaoyan L, Aiqin W, Jun L, Tao Z, Jingyue L (2015) Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal 5:6249–6254. https://doi.org/10.1021/acscatal.5b01114
Cao X, Fu Q, Luo Y (2014) Catalytic activity of Pd-doped cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Phys Chem Chem Phys 16:8367–8375. https://doi.org/10.1039/c4cp00399c
Cao X, Mirjalili A, Wheeler J, Xie W, Jang BWL (2015a) Investigation of the preparation methodologies of Pd–Cu single atom alloy catalysts for selective hydrogenation of acetylene. Front Chem Sci Eng 9:442–449. https://doi.org/10.1007/s11705-015-1547-x
Cao X, Ji Y, Luo Y (2015b) Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations. J Phys Chem C 119:1016–1023. https://doi.org/10.1021/jp508625b
Cavanagh RR, Yates JT (1981) Site distribution studies of Rh supported on Al2O3-an infrared study of chemisorbed CO. J Chem Phys 74:4150–4155. https://doi.org/10.1063/1.441544
Chen MS (2004) The structure of catalytically active gold on titania. Science 306:252–255. https://doi.org/10.1126/science.1102420
Cheng MJC, Ezra LP, Hieu HB, Alexis TH (2016a) Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal 6:7769–7777. https://doi.org/10.1021/acscatal.6b01393
Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X (2016b) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638. https://doi.org/10.1038/ncomms13638
Chithra A, DeRita L, Phillip C (2017) Using probe molecule ftir spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin J Catal 38:1473–1480. https://doi.org/10.1016/S1872-2067(17)62876-6
Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJ, Kim H, Choi M (2016) Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 7:10922–10930. https://doi.org/10.1038/ncomms10922
Chunlei W, Xiang-Kui G, Huan Y, Yue L, Junjie L, Dandan L, Wei-Xue L, Junling L (2017) Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal 7:887–891. https://doi.org/10.1021/acscatal.6b02685
Corma A, Salnikov OG, Barskiy DA, Kovtunov KV, Koptyug IV (2015) Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem Eur J 21:7012–7015. https://doi.org/10.1002/chem.201406664
Crespo-Quesada M, Artur Y, Jin MS, Xia Y, Lioubov K (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794. https://doi.org/10.1021/ja204557m
Daniel M, Heron V, Lorenzo R, Stfephane F, Xile H (2012) Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3:2515–2525. https://doi.org/10.1039/c2sc20539d
Deng Q, Zhao L, Gao X, Zhang M, Luo Y, Zhao Y (2013) Single layer of polymeric cobalt phthalocyanine: promising low-cost and high-activity nanocatalysts for co oxidation. Small 9:3506–3513. https://doi.org/10.1002/smll.201300652
Ding WC, Gu XK, Su HY, Li WX (2014) Single Pd atom embedded in CeO2(111) for NO reduction with CO: a first-principles study. J Phys Chem C 118:12216–12223. https://doi.org/10.1021/jp503745c
Ding K, Gulec A, Alexis MJ, Neil MS, Galen DS, Laurence DM, Peter CS (2015) Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350:189–192. https://doi.org/10.1126/science.aac6368
Dmitri AB, Monika Z, Alexander SL, Olga YP, Fredrik SH, Quentin MR, Ursel B, Lyubov GB (2016) Single atoms of Pt-group metals stabilized by n-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal 6:3442–3451. https://doi.org/10.1021/acscatal.6b00476
Du C, Lin H, Lin B, Ma Z, Hou T, Tang J, Li Y (2015) MoS2 supported single platinum atoms and their superior catalytic activity for CO oxidation: a density functional theory study. J Mater Chem A 3:23113–23119. https://doi.org/10.1039/c5ta05084g
Dvořák F, Farnesi CM, Tovt A, Tran ND, Negreiros FR, Vorokhta M, Skála T, Matolínová I, Mysliveček J, Matolín V, Fabris S (2016) Creating single-atom Pt-ceria catalysts by surface step decoration. Nat Commun 7:10801–10808. https://doi.org/10.1038/ncomms10801
Edwards J, Solsona B, Landon P, Carley A, Herzing A, Kiely C, Hutchings G (2005) Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J Catal 236:69–79. https://doi.org/10.1016/j.jcat.2005.09.015
Enache DI (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311:362–365. https://doi.org/10.1126/science.1120560
Ewing CS, Bagusetty A, Patriarca EG, Lambrecht DS, Veser G, Johnson JK (2016) Impact of support interactions for single-atom molybdenum catalysts on amorphous silica. Ind Eng Chem Res 55:12350–12357. https://doi.org/10.1021/acs.iecr.6b03558
Fei H, Dong J, Arellano-Jimenez MJ, Ye G, Dong KN, Samuel EL, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668–8675. https://doi.org/10.1038/ncomms9668
Fengyu L, Yafei L, Xiao CZ, Zhongfang C (2015) Exploration of high-performance single-atom catalysts on support M1/FeO x for co oxidation via computational study. ACS Catal 5:544–552. https://doi.org/10.1021/cs501790v
Figueroba A, Kovács G, Bruix A, Neyman KM (2016) Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catal Sci Technol 6:6806–6813. https://doi.org/10.1039/c6cy00294c
Flytzani-Stephanopoulos M (2014) Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc Chem Res 47:783–792. https://doi.org/10.1021/ar4001845
Fu Q, Saltsburg H, Maria F (2003) Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301:935–939. https://doi.org/10.1126/science.1085721
Gai PL, Yoshida K, Ward, Walsh M, Baker RT, Van De Water L, Watson MJ, Boyes ED (2016) Visualisation of single atom dynamics in water gas shift reaction for hydrogen generation. Catal Sci Technol 6:2214–2227. https://doi.org/10.1039/c5cy01154j
Gao H (2016) CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: first principle study. Appl Surf Sci 379:347–357. https://doi.org/10.1016/j.apsusc.2016.04.009
Gao M, Lyalin A, Taketsugu T (2013) Co oxidation on h-BN supported Au atom. J Chem Phys 138:034701–034709. https://doi.org/10.1063/1.4774216
Gao G, Jiao Y, Waclawik ER, Du A (2016) Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc 138:6292–6297. https://doi.org/10.1021/jacs.6b02692
Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522. https://doi.org/10.1021/cr00035a003
Ghosh TK, Nair NN (2013) Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 5:1811–1821. https://doi.org/10.1002/cctc.201200799
Gianvito V, Davide A, Maarten N, Zupeng C, Dariya D, Markus A, Núria L, Javier P (2015) A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed 54:11265–11269. https://doi.org/10.1002/anie.201505073
Greecor RB, Lytle FW (1980) Morphology of supported metal clusters: determination by EXAFs and chemisorption. J Catal 63:476–486. https://doi.org/10.1016/0021-9517(80)90102-5
Guang XP, Xiao YL, Aiqin W, Adam FL, Mark AI, Lin L, Xiaoli P, Xiaofeng Y, Xiaodong W, Zhijun T, Karen W, Tao Z (2015) Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 5:3717–3725. https://doi.org/10.1021/acscatal.5b00700
Guang XP, Xiao YL, Xiaofeng Y, Leilei Z, Aiqin W, Lin L, Hua W, Xiaodong W, Tao Z (2017a) Performance of Cu-alloyed pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7:1491–1500. https://doi.org/10.1021/acscatal.6b03293
Guang X, Pei XY, Meng L, Qian C, Aiqin W, Tao Z (2017b) Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: effects of Cu loading. Chin J Catal 38:1540–1548. https://doi.org/10.1016/S1872-2067(17)62847-X
Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619. https://doi.org/10.1126/science.1253150
Hao Z, Geng W, Da Ch, Xiaojun L, Jinghong L (2008) Tuning photoelectrochemical performances of Ag–TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549. https://doi.org/10.1021/cm801796q
He H, Jagvaral Y (2017) Electrochemical reduction of CO2 on graphene supported transition metals—towards single atom catalysts. Phys Chem Chem Phys 19:11436–11446. https://doi.org/10.1039/c7cp00915a
Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Catalytic oxidation of carbon monoxide on monodispersed platinum clusters-each atom counts. J Am Chem Soc 121:3214–3217. https://doi.org/10.1021/ja983616l
Hongling G, Tao Z, Jian L, Botao Q, Shu M, Aiqin W, Xiao D (2017) Enhanced performance of Rh1/TiO2 catalyst without methanation in water–gas shift reaction. AIChE J 63:2081–2088. https://doi.org/10.1002/aic.15585
Huan Y, Hao C, Hong Y, Yue L, Tao Y, Wang C, Li J, Wei S, Lu J (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484–10487. https://doi.org/10.1021/jacs.5b06485
Huang X, Xia Y, Cao Y, Zheng X, Pan H, Zhu J, Ma C, Wang H, Li J, You R, Wei S, Huang W, Lu J (2017) Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res 10:1302–1312. https://doi.org/10.1007/s12274-016-1416-z
Ja HK, Jianzhi H, Donghai M, Cheol-Woo Y, Do HK, Charles HFP, Lawrence FA, Janos S (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325:1670–1674. https://doi.org/10.1126/science.1176745
Jia H, Wang C (2015) Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: pathway, reactivity, and selectivity. J Hazard Mater 300:779–787. https://doi.org/10.1016/j.jhazmat.2015.08.017
Jinxia L, Congqiao X, Tao Z, Jun L (2017) Catalytic activities of single-atom catalysts for CO oxidation: Pt1/FeO x vs. Fe1/FeO x . Chin J Catal 38:1566–1573. https://doi.org/10.1016/S1872-2067(17)62879-1
Jirkovsky JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc 133:19432–19441. https://doi.org/10.1021/ja206477z
John J, Haifeng X, Andrew TD, Eric JP, Hien P, Sivakumar RC, Gongshin Q, Se O, Michelle HW, Xavier IPH, Yong W, Abhaya KD (2016) Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:150–154. https://doi.org/10.1126/science.aaf8800
Joseph D, Kistler NC, Pinghong X, Bryan E, Piyasan P, Cong-Yan C, Nigel DB, Bruce CG (2014) A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed 53:8904–8907. https://doi.org/10.1002/anie.201403353
Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829. https://doi.org/10.1126/science.1180297
Kesavan L, Tiruvalam R, Rahim MHA, Bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au–Pd alloy nanoparticles. Science 331:195–199. https://doi.org/10.1126/science.1198458
Kunlun D, Ahmet G, Alexis MJ, Neil MS, Galen DS, Laurence DM, Peter CS (2015) Identification of active sites in co oxidation and water–gas shift over supported Pt catalysts. Science 350:189–192. https://doi.org/10.1126/science.aac6368
Kuo L, Aipin W, Zhang Tao (2012) Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal 2:1165–1178. https://doi.org/10.1021/cs200418w
Kwang TR, Daejin E, Li L, Elena S, Joan MR, Siu-Wai C, Maria F, George WF (2009) Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: a scanning tunneling microscopy/spectroscopy study. J Phys Chem C 113:10198–10205. https://doi.org/10.1021/jp8112599
Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209–1212. https://doi.org/10.1126/science.1215864
Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui YT, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T (2016) Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem Int Ed 55:16054–16058. https://doi.org/10.1002/anie.201607885
Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228. https://doi.org/10.1126/science.1185200
Leilei Z, Jeffrey TM, Xiaoyan L, Xiaofeng Y, Wentao W, Lin L, Yanqiang H, Chung-Yuan M, Tao Z (2014) Efficient and durable Au alloyed pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal 4:1546–1553. https://doi.org/10.1021/cs500071c
Li C (2016) Single Co atom catalyst stabilized in C/N containing matrix. Chin J Catal 37:1443–1445. https://doi.org/10.1016/s1872-2067(16)62520-2
Li Y, Sun Q (2014) The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet. Sci Rep 4:4098–4104. https://doi.org/10.1038/srep04098
Li ZY, Yuan Z, Li XN, Zhao YX, He SG (2014) CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J Am Chem Soc 136:14307–14313. https://doi.org/10.1021/ja508547z
Li F, Li L, Liu X, Zeng XC, Chen Z (2016) High-performance Ru1/CeO2 single-atom catalyst for CO oxidation: a computational exploration. ChemPhysChem 17:3170–3175. https://doi.org/10.1002/cphc.201600540
Li Q, Ma Z, Sa R, Adidharma H, Gasem KAM, Russell AG, Fan M, Wu K (2017) Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@MO2C—an important advanced material for H2 production. J Mater Chem A 5:14658–14672. https://doi.org/10.1039/c7ta03115g
Liang JX, Lin J, Yang XF, Wang AQ, Qiao BT, Liu J, Zhang T, Li J (2014) Theoretical and experimental investigations on single-atom catalysis: Ir1/FeO x for Co oxidation. J Phys Chem C 118:21945–21951. https://doi.org/10.1021/jp503769d
Liang S, Hao C, Shi Y (2015) The power of single-atom catalysis. ChemCatChem 7:2559–2567. https://doi.org/10.1002/cctc.201500363
Liang JX, Yang XF, Wang A, Zhang T, Li J (2016) Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeO x for co oxidation. Catal Sci Technol 6:6886–6892. https://doi.org/10.1039/c6cy00672h
Liang JX, Wang YG, Yang XF, Xing DH, Wang AQ, Zhang T, Li J (2017a) Recent advances in single-atom catalysis. Encycl Inorg Bioinorg Chem. https://doi.org/10.1002/9781119951438.eibc2448
Liang S, Qiao B, Song X, Hao C, Wang A, Zhang T, Shi Y (2017b) Experimental investigation and theoretical exploration of single-atom electrocatalysis in hybrid photovoltaics: the powerful role of pt atoms in triiodide reduction. Nano Energy 39:1–8. https://doi.org/10.1016/j.nanoen.2017.06.036
Lin ZZ (2016) Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 108:343–350. https://doi.org/10.1016/j.carbon.2016.07.040
Lin J, Qiao B, Liu J, Huang Y, Wang A, Li L, Zhang W, Allard LF, Wang X, Zhang T (2012) Design of a highly active Ir/Fe(OH) x catalyst: versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew Chem Int Ed 51:2920–2924. https://doi.org/10.1002/anie.201106702
Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T (2013a) Remarkable performance of Ir1/FeO x single-atom catalyst in water gas shift reaction. J Am Chem Soc 135:15314–15317. https://doi.org/10.1021/ja408574m
Lin S, Ye X, Johnson RS, Guo H (2013b) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of Co oxidation. J Phys Chem C 117:17319–17326. https://doi.org/10.1021/jp4055445
Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T (2015) Little do more: a highly effective Pt1/FeO x single-atom catalyst for the reduction of no by H2. Chem Commun 51:7911–7914. https://doi.org/10.1039/c5cc00714c
Liqiong W, Feng L, Simin L, Yuhua W, Haijun Z (2017) Preparation, characterization and catalytic performance of single-atom catalysts. Chin J Catal 38:1528–1539. https://doi.org/10.1016/S1872-2067(17)62770-0
Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59. https://doi.org/10.1021/acscatal.6b01534
Liu H, Wang C (2014) Luminescent Cu(0)@Cu(i)–TGA core–shell nanoclusters via self-assembly. Synth Met 198:329–334. https://doi.org/10.1016/j.synthmet.2014.10.044
Liu X, Duan T, Sui Y, Meng C, Han Y (2014) Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: a first-principles investigation. RSC Adv 4:38750–38760. https://doi.org/10.1039/c4ra06436d
Liu X, Duan T, Meng C, Han Y (2015) Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: a first-principles investigation. RSC Adv 5:10452–10459. https://doi.org/10.1039/c4ra14482a
Liu J, Lucci FR, Yang M, Lee S, Marcinkowski MD, Therrien AJ, Williams CT, Sykes EC, Flytzani-Stephanopoulos M (2016a) Tackling CO poisoning with single-atom alloy catalysts. J Am Chem Soc 138:6396–6399. https://doi.org/10.1021/jacs.6b03339
Liu W, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2016b) Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci 7:5758–5764. https://doi.org/10.1039/c6sc02105k
Liu J, Matthew DM, Colin JM, Melissa LL, Natalie AW, Felicia RL, Maria F, Charles HS (2017a) Selective formic acid dehydrogenation on Pt–Cu single-atom alloys. ACS Catal 7:413–420. https://doi.org/10.1021/acscatal.6b02772
Liu JC, Wang YG, Li J (2017b) Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc 139:6190–6199. https://doi.org/10.1021/jacs.7b01602
Liu Z, He T, Liu K, Chen W, Tang Y (2017c) Structural, electronic and catalytic performances of single-atom Fe stabilized by divacancy-nitrogen-doped graphene. RSC Adv 7:7920–7928. https://doi.org/10.1039/c6ra28387j
Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2017d) Discriminating catalytically active FeN x species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc. https://doi.org/10.1021/jacs.7b05130
Long B, Tang Y, Li J (2016) New mechanistic pathways for co oxidation catalyzed by single-atom catalysts: supported and doped Au1/ThO2. Nano Res 9:3868–3880. https://doi.org/10.1007/s12274-016-1256-x
Longhua T, Yueming L, Hongbing F, Jin L, Jinghong L (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789. https://doi.org/10.1002/adfm.200900377
Lu J, Ceren A, Nigel DB, Bruce CG (2012) Imaging isolated gold atom catalytic sites in zeolite NaY. Angew Chem Int Ed 51:5842–5846. https://doi.org/10.1002/anie.201107391
Lu Z, Lv P, Yang Z, Li S, Ma D, Wu R (2017) A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Phys Chem Chem Phys 19:16795–16805. https://doi.org/10.1039/c7cp02430d
Lucci FR, Liu J, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat Commun 6:8550–8557. https://doi.org/10.1038/ncomms9550
Lucci FR, Darby MT, Mattera MF, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes EC (2016) Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys. J Phys Chem. Lett 7:480–485. https://doi.org/10.1021/acs.jpclett.5b02400
Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116:23485–23493. https://doi.org/10.1021/jp308334x
Ma DW, Li T, Wang Q, Yang G, He C, Ma B, Lu Z (2015) Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 95:756–765. https://doi.org/10.1016/j.carbon.2015.09.008
Ma DW, Wang Q, Yan X, Zhang X, He C, Zhou D, Tang Y, Lu Z, Yang Z (2016) 3d transition metal embedded C2N monolayers as promising single-atom catalysts: a first-principles study. Carbon 105:463–473. https://doi.org/10.1016/j.carbon.2016.04.059
Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75. https://doi.org/10.1039/c1cy00361e
Mao K, Li L, Zhang W, Pei Y, Zeng XC, Wu X, Yang J (2014) A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2d h-BN monolayer: a co-promoted O2 activation. Sci Rep 4:5441–5447. https://doi.org/10.1038/srep05441
Mark T, Vladimir BG, Owain PHV, Pavel A, Angel BM, Mintcho ST, Brian FGJ, Richard ML (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983. https://doi.org/10.1038/nature07194
Matsubu JC, Yang VN, Christopher P (2015) Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc 137:3076–3084. https://doi.org/10.1021/ja5128133
Matthew JK, Phillip C (2016) Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3-supported pt catalysts. ACS Catal 6:5599–5609. https://doi.org/10.1021/acscatal.6b01128
Melanie M, Mina Y, Lawrence FA, David RM, Wu Z, Yang X, Gabriel V, Stocks GM, Chaitanya KN (2013) Co oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J Am Chem Soc 135:12634–12645. https://doi.org/10.1021/ja401847c
Ming Y, Sha L, Yuan W, Jeffrey AH, Ye X, Lawrence FA, Sungsik L, Jun H, Manos M, Maria F (2014) Catalytically active Au–O(OH) x -species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346:1498–1501. https://doi.org/10.1126/science.1260526
Mykola T, Pingo M, Martin O, Prokop H, Francois CB, Jindrich K, Martin V, Pavel J, Martin S (2014) Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8:7318–7324. https://doi.org/10.1021/nn502438k
Narula CK, Stocks GM (2012) Ab initio density functional calculations of adsorption of transition metal atoms on θ-Al2O3(010) surface. J Phys Chem C 116:5628–5636. https://doi.org/10.1021/jp209725a
Narula CK, Allard LF, Stocks GM, Moses-Debusk M (2014) Remarkable no oxidation on single supported platinum atoms. Sci Rep 4:7238. https://doi.org/10.1038/srep07238
Neitzel A, Figueroba A, Lykhach Y, Skála T, Vorokhta M, Tsud N, Mehl S, Ševčíková K, Prince KC, Neyman KM, Matolín V, Libuda J (2016) Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J Phys Chem C 120:9852–9862. https://doi.org/10.1021/acs.jpcc.6b02264
Ogino I (2017) X-ray absorption spectroscopy for single-atom catalysts: critical importance and persistent challenges. Chin J Catal 38:1481–1488. https://doi.org/10.1016/S1872-2067(17)62880-8
Parkinson GS (2017) Unravelling single atom catalysis: the surface science approach. Chin J Catal 38:1454–1459. https://doi.org/10.1016/S1872-2067(17)62878-X
Pei GX, Liu XY, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang BWL, Mou CY (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38:2043–2051. https://doi.org/10.1039/c3nj01136d
Pengxin L, Yun Z, Ruixuan Q, Shiguang M, Guangxu C, Lin G, Daniel MC, Peng Z, Qing G, Dandan Z, Binghui W, Gang F, Nanfeng Z (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–802. https://doi.org/10.1126/science.aaf5251
Peterson EJ, Delariva AT, Lin S, Johnson RS, Guo H, Miller JT, Hun Kwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun 5:4885–4895. https://doi.org/10.1038/ncomms5885
Piernavieja-Hermida M, Lu Z, White A, Low K-B, Wu T, Elam JW, Wu Z, Lei Y (2016) Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale 8:15348–15356. https://doi.org/10.1039/c6nr04403d
Ping S, Xiaozhi L, Wei X, Weilin X, Zheng J, Lin G (2017) Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Funct Mater 27:1700802. https://doi.org/10.1002/adfm.201700802
Pingping H, Zhiwei H, Zakariae A, Michiel M, Fei X, Freek K, Alla D, Yaxin C, Xiao G, Xingfu T (2014) Electronic metal-support interactions in single-atom catalysts. Angew Chem Int Ed 53:3418–3421. https://doi.org/10.1002/anie.201309248
Qiao Wang A, Yang X, Lawrence FA, Zheng J, Cui Y, Liu J, Jun L, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat Chem 3:634–641. https://doi.org/10.1038/nchem.1095
Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J (2015a) Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin J Catal 36:1505–1511. https://doi.org/10.1016/s1872-2067(15)60889-0
Qiao B, Liang JX, Wang A, Xu CQ, Li J, Zhang T, Liu JJ (2015b) Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 8:2913–2924. https://doi.org/10.1007/s12274-015-0796-9
Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed Engl 54:14031–14035. https://doi.org/10.1002/anie.201507381
Rosa A, Zailai X, Youngmi Y, Gregor W, Li LS, Klaus EH, Matthias F, Patrick K, Michael H, Axel KG, Robert S (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753. https://doi.org/10.1021/acscatal.5b00094
Sakthivel S, Shankar MV, Palanichamy M, Banumathi A, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008. https://doi.org/10.1016/j.watres.2004.04.046
Salai CA, Andreas H (2017) Water–gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports. ACS Catal 7:301–309. https://doi.org/10.1021/acscatal.6b02764
Sara A, Salai CA, Andreas H (2014) On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts. J Catal 309:314–324. https://doi.org/10.1016/j.jcat.2013.10.012
Seoin B, Yousung J (2017) TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett 2:969–975. https://doi.org/10.1021/acsenergylett.7b00152
Shapovalov V, Metiu H (2007) Catalysis by doped oxides: Co oxidation by Au x Ce1−x O2. J Catal 245:205–214. https://doi.org/10.1016/j.jcat.2006.10.009
Shi J (2017) Single-atom Co-doped MoS2 monolayers for highly active biomass hydrodeoxygenation. Chem 2:468–469. https://doi.org/10.1016/j.chempr.2017.03.005
Shi JL, Wu JH, Zhao XJ, Xue XL, Gao YF, Guo ZX, Li SF (2016) Substrate Co-doping modulates electronic metal-support interactions and significantly enhances single-atom catalysis. Nanoscale 8:19256–19262. https://doi.org/10.1039/c6nr04292a
Simon FJH, Rik MB, Mhairi HG, Ian H, Andrew DN, Karen W, Adam FL (2007) High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew Chem 119:8747–8750. https://doi.org/10.1002/ange.200702534
Song W, Hensen EJM (2013) Structure sensitivity in CO oxidation by a single au atom supported on ceria. J Phys Chem C 117:7721–7726. https://doi.org/10.1021/jp400977m
Song W, Jansen APJ, Hensen EJM (2013) A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discuss 162:281. https://doi.org/10.1039/c3fd20129e
Songhai X, Wataru K, Yuichi N, Tatsuya T (2012) Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal 2:1519–1523. https://doi.org/10.1021/cs300252g
Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton GA (2014) Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C 118:3890–3900. https://doi.org/10.1021/jp408979h
Strizhak PE (2013) Nanosize effects in heterogeneous catalysis. Theor Exp Chem 49:2–21. https://doi.org/10.1007/s11237-013-9297-7
Sun S, Zhang G, Nicolas G, Ning C, Zhou J, Yang S, Chen W, Meng X, Geng D, Mohammad NB, Ruying L, Ye S, Shanna K, Gianluigi AB, Sham T, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3(2013):1775–1783. https://doi.org/10.1038/srep01775
Sun X, Lin J, Zhou Y, Li L, Su Y, Wang X, Zhang T (2017) Feox supported single-atom pd bifunctional catalyst for water gas shift reaction. AIChE J 63:4022–4031. https://doi.org/10.1002/aic.15759
Sungeun Y, Hyunjoo L (2013) Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal 3:437–443. https://doi.org/10.1021/cs300809j
Sungeun Y, Jiwhan K, Young JT, Aloysius S, Hyunjoo L (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55:2058–2062. https://doi.org/10.1002/anie.201509241
Sungeun Y, Jiwhan K, Aloysius S, Hyunjoo L (2017) Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal 7:1301–1307. https://doi.org/10.1021/acscatal.6b02899
Tang Y, Zhao S, Long B, Liu JC, Li J (2016) On the nature of support effects of metal dioxides MO2(m = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J Phys Chem C 120:17514–17526. https://doi.org/10.1021/acs.jpcc.6b05338
Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175. https://doi.org/10.1021/ja00469a029
Thomas JM, Raja R, Lewis DW (2005) Single-site heterogeneous catalysts. Angew Chem Int Ed 44:6456–6482. https://doi.org/10.1002/anie.200462473
Ting D, Weitao Z, Wei Z (2017) Increasing the range of non-noble-metal single-atom catalysts. Chin J Catal 38:1489–1497. https://doi.org/10.1016/S1872-2067(17)62799-2
Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlögl U, Yang W, Zhang XX (2012) Doping monolayer graphene with single atom substitutions. Nano Lett 12:141–144. https://doi.org/10.1021/nl2031629
Wang Z, Hao X, Gerhold S, Mares P, Wagner M, Bliem R, Schulte K, Schmid M, Franchini C, Diebold U (2014a) Stabilizing single Ni adatoms on a two-dimensional porous titania overlayer at the SrTiO3(110) surface. J Phys Chem C 118:19904–19909. https://doi.org/10.1021/jp506234r
Wang WL, Santos EJG, Jiang B, Cubuk ED, Ophus C, Centeno A, Pesquera A, Zurutuza A, Ciston J, Westervelt R, Kaxiras E (2014b) Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett 14:450–455. https://doi.org/10.1021/nl403327u
Wang Y, Yuan H, Li Y, Chen Z (2015a) Two-dimensional iron-phthalocyanine (Fe-PC) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale 7:11633–11641. https://doi.org/10.1039/c5nr00302d
Wang YG, Mei D, Glezakou VA, Li J, Rousseau R (2015b) Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 6:6511–6518. https://doi.org/10.1038/ncomms7511
Wang Z, Zang L, Fan X, Jia H, Li L, Deng W, Wang C (2015c) Defect-mediated of Cu@TiO2 core-shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation. Appl Surf Sci 358:479–484. https://doi.org/10.1016/j.apsusc.2015.08.051
Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M, Zheng X, Zhu J, Zhang W, Ma C, Si R, Zeng J (2016a) Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat Commun 7:14036–14043. https://doi.org/10.1038/ncomms14036
Wang J, Zhao X, Lei N, Li L, Zhang L, Xu S, Miao S, Pan X, Wang A, Zhang T (2016b) Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WO x -supported single/pseudo-single atom pt catalyst. ChemSusChem 9:784–790. https://doi.org/10.1002/cssc.201501506
Wang ZT, Darby MT, Therrien AJ, El-Soda M, Michaelides A, Stamatakis M, Sykes ECH (2016c) Preparation, structure, and surface chemistry of Ni–Au single atom alloys. J Phys Chem C 120:13574–13580. https://doi.org/10.1021/acs.jpcc.6b03473
Wei X, Yang XF, Wang AQ, Li L, Liu XY, Zhang T, Mou CY, Li J (2012) Bimetallic Au–Pd alloy catalysts for N2O decomposition: effects of surface structures on catalytic activity. J Phys Chem C 116:6222–6232. https://doi.org/10.1021/jp210555s
Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T (2014) Feox-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 5:5634–5641. https://doi.org/10.1038/ncomms6634
Wu P, Du P, Zhang H, Cai C (2015) Graphyne-supported single fe atom catalysts for CO oxidation. Phys Chem Chem Phys 17:1441–1449. https://doi.org/10.1039/c4cp04181j
Xiang-Kui G, Botao Q, Chuan-Qi H, Wu-Chen D, Keju S, Ensheng Z, Tao Z, Jingyue L, Wei-Xue L (2014) Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal 4:3886–3890. https://doi.org/10.1021/cs500740u
Xiaogang L, Wentuan B, Lei Z, Shi T, Wangsheng C, Qun Z, Yi L, Changzheng W, Yi X (2016) Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28:2427–2431. https://doi.org/10.1002/adma.201505281
Xin-Bo Z, Jun-Min Y, Song H, Hiroshi S, Qiang X (2009) Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J Am Chem Soc 131:2778–2779. https://doi.org/10.1021/ja808830a
Xing J, Chen JF, Li YH, Yuan WT, Zhou Y, Zheng LR, Wang HF, Hu P, Wang Y, Zhao HJ, Wang Y, Yang HG (2014) Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem Eur J 20:2138–2144. https://doi.org/10.1002/chem.201303366
Xinjiang C, Xingchao D, Carsten K, Marga-Martina P, Sebastian W, Feng S, Angelika B, Matthias B (2017) Synthesis of single atom based heterogeneous platinum catalysts: high selectivity and activity for hydrosilylation reactions. ACS Cent Sci 3:580–585. https://doi.org/10.1021/acscentsci.7b00105
Xu G, Wang R, Yang F, Ma D, Yang Z, Lu Z (2017) CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley–Rideal mechanism. Carbon 118:35–42. https://doi.org/10.1016/j.carbon.2017.03.034
Yan T, Jin-Xia L, Jun L (2017a) Investigation of water adsorption and dissociation on Au1/CeO2 single-atom catalysts using density functional theory. Chin J Catal 38:1558–1565. https://doi.org/10.1016/S1872-2067(17)62829-8
Yan T, Yang-Gang W, Jun L (2017b) Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J Phys Chem C 121:11281–11289. https://doi.org/10.1021/acs.jpcc.7b00313
Yang M, Flytzani-Stephanopoulos M (2017) Design of single-atom metal catalysts on various supports for the low-temperature water–gas shift reaction. Catal Today. https://doi.org/10.1016/j.cattod.2017.04.034
Yang L, Jingyue L (2017) Co oxidation on metal oxide supported single Pt atoms: the role of the support. Ind Eng Chem Res 56:6916–6925. https://doi.org/10.1021/acs.iecr.7b01477
Yang T, Tetsu T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637. https://doi.org/10.1021/ja042192u
Yang M, Allard LF, Flytzani-Stephanopoulos M (2013a) Atomically dispersed Au–(OH)– species bound on titania catalyze the low-temperature water–gas shift reaction. J Am Chem Soc 135:3768–3771. https://doi.org/10.1021/ja312646d
Yang XF, Aiqin W, Botao Q, Jun L, Jingyue L, Tao Z (2013b) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748. https://doi.org/10.1021/ar300361m
Yang M, Liu J, Lee S, Zugic B, Huang J, Allard LF, Flytzani-Stephanopoulos M (2015) A common single-site Pt(ii)–O(OH) x -species stabilized by sodium on “active” and “inert” supports catalyzes the water–gas shift reaction. J Am Chem Soc 137:3470–3473. https://doi.org/10.1021/ja513292k
Yang T, Fukuda R, Hosokawa S, Tanaka T, Sakaki S, Ehara M (2017) A theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3 (m = Pd, Fe Co, and Ni). ChemCatChem 9:1222–1229. https://doi.org/10.1002/cctc.201601713
Yantao S, Haisheng W, Jiahao G, Suxia L, Aiqin W, Tao Z, Jingyue L, Tingli M (2014) Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization. Adv Mater 26:8147–8153. https://doi.org/10.1002/adma.201402978
Yong W, Weitao Z, Dehui D, Xinhe B (2017) Two-dimensional materials confining single atoms for catalysis. Chin J Catal 38:1443–1453. https://doi.org/10.1016/S1872-2067(17)62839-0
Zhang X, Shi H, Xu BQ (2005) Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed 44:7132–7135. https://doi.org/10.1002/anie.200502101
Zhang H, Tatsuya W, Mitsutaka O, Masatake H, Naoki T (2011) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52. https://doi.org/10.1038/nmat3143
Zhang RQ, Lee TH, Yu BD, Stampfl Soon A (2012a) The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys Chem Chem Phys 14:16552–16557. https://doi.org/10.1039/c2cp41392b
Zhang W, Xu S, Han X, Bao X (2012b) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41:192–210. https://doi.org/10.1039/c1cs15009j
Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook SJ, Chisholm MF (2013) Catalytically active single-atom niobium in graphitic layers. Nat Commun 4:1924–1930. https://doi.org/10.1038/ncomms2929
Zhang H, Kawashima K, Okumura M, Toshima N (2014) Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J Mater Chem A 2:13498–13508. https://doi.org/10.1039/c4ta01696c
Zhang X, Lei J, Wu D, Zhao X, Jing Y, Zhou Z (2016a) A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for co oxidation. J Mater Chem A 4:4871–4876. https://doi.org/10.1039/c6ta00554c
Zhang B, Asakura H, Zhang J, Zhang J, De S, Yan N (2016b) Stabilizing a platinum single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed 55:8319–8323. https://doi.org/10.1002/anie.201602801
Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J (2016c) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314. https://doi.org/10.1002/anie.201608597
Zhao P, Su Y, Zhang Y, Li SJ, Chen G (2011) CO catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem Phys Lett 515:159–162. https://doi.org/10.1016/j.cplett.2011.09.034
Zhiwei H, Qingqing C, Pingping H, Jiming H, Junhua L, Xingfu T (2012) Catalytically active single-atom sites fabricated from silver particles. Angew Chem Int Ed 51:4198–4203. https://doi.org/10.1002/anie.201109065
Zhou S, Duan Y, Wang F, Wang C (2017) Fluorescent au nanoclusters stabilized by silane: facile synthesis, color-tunability and photocatalytic properties. Nanoscale 9:4981–4988. https://doi.org/10.1039/c7nr01052d
Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem Int Ed. https://doi.org/10.1002/anie.201703864
Zupeng C, Sharon MEV, Rowan KL, Roland H, Tom F, Quentin MR, John MT, Paul AM, Dariya D, Markus A, Sergey P, Núria L, Javier PR (2017) Stabilization of single metal atoms on graphitic carbon nitride. Adv Funct Mater 27:1605785–1605796. https://doi.org/10.1002/adfm.201605785
Acknowledgements
We gratefully acknowledge financial support from the National Nature Science Foundation of China (Grant No. 21473248), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the National Science Foundation under Grant #IIP-1059286 to the American Society for Engineering Education. All individual contributions in the cited references are gratefully acknowledged, and any omission is regretted.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, J., Bunes, B.R., Zang, L. et al. Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environ Chem Lett 16, 477–505 (2018). https://doi.org/10.1007/s10311-017-0679-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-017-0679-2