Skip to main content

Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry

Abstract

Nanomaterials may help to solve issues such as water availability, clean energy generation, control of drug-resistant microorganisms and food safety. Here we review innovative approaches to solve these issues using nanotechnology. The major topics discussed are wastewater treatment using carbon-based, metal-based and polymeric nanoadsorbents for removing organic and metal contaminants; nanophotocatalysis for microbial control; desalination of seawater using nanomembranes; energy conversion and storage using solar cells and hydrogen-sorbents nanostructures; antimicrobial properties of nanomaterials; smart delivery systems; biocompatible nanomaterials such as nanolignocellulosis and starches-based materials, and methods to decrease the toxicity of nanomaterials. Significantly, here it is reviewed two ways to palliate nanomaterials toxicity: (a) controlling physicochemical factors affecting this toxicity in order to dispose of more safe nanomaterials, and (b) harnessing greener synthesis of them to bring down the environmental impact of toxic reagents, wastes and byproducts. All these current challenges are reviewed at the present article in an effort to evaluate environmental implications of nanomaterials technology by means of a complete, reliable and critical vision.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

From Xiaolei et al. (2013), with permission from Elsevier

Fig. 3

Reproduced from Zhang et al. (2013), with permission of The Royal Society of Chemistry

Fig. 4

Reproduced from Hajipour et al. (2012), with permission from Elsevier

References

  • Adlim A, Bakar MA (2008) Preparation of Chitosan-gold nanoparticles: Part 2. The role of Chitosan. Indo J Chem 8(3):320–326

    Google Scholar 

  • Adlim A, Bakar M (2013) The properties of Pd/Au bimetallic colloidal catalysts stabilized by chitosan and prepared by simultaneous and stepwise chemical reduction of the precursor ions. Kinet Catal 54(5):586–596. doi:10.1134/S0023158413050017

    Article  CAS  Google Scholar 

  • Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes. Environ Chem Lett 12:241–255. doi:10.1007/s10311-014-0457-3

    Article  CAS  Google Scholar 

  • Agboola O, Maree J, Kolesnikov A, Mbaya R, Sadiku R (2015) Theoretical performance of nanofiltration membranes for waste water treatment. Environ Chem Lett 13:37–47. doi:10.1007/s10311-014-0486-y

    Article  CAS  Google Scholar 

  • Ahamed M, Alhadlaq H, Khan M, Karuppiah P, Al-Dhab N (2014) Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi:10.1155/2014/637858

    Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil N, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod 55:202–206. doi:10.1016/j.indcrop.2014.01.026

    Article  CAS  Google Scholar 

  • Ahmed M, Murtaza G, Mehmood A, Bhatti T (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Mater Lett 153:10–13. doi:10.1016/j.matlet.2015.03.143

    Article  CAS  Google Scholar 

  • Allaker R (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1185. doi:10.1177/0022034510377794

    Article  CAS  Google Scholar 

  • OECD and Allianz (2008) Small sizes that matter: Opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme. http://www.oecd.org/science/nanosafety/37770473.pdf

  • Anand P, Isar J, Saran S, Saxena R (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97:1018–1025. doi:10.1016/j.biortech.2005.04.046

    Article  CAS  Google Scholar 

  • Arokiyaraj S, Saravanan M, Prakash N, Valan Arasu M, Vijayakumar B, Vincent S (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull 48:3323–3327. doi:10.1016/j.materresbull.2013.05.059

    Article  CAS  Google Scholar 

  • Aruguete DM, Bojeong K, Michael FH, Yanjun M, Yingwen C, Andy H, Jie L, Amy P (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts 15:93–102. doi:10.1039/C2EM30692A

    Article  CAS  Google Scholar 

  • Ashwood P, Thompson R, Powell J (2007) Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp Biol Med 232(1):107–117

    CAS  Google Scholar 

  • Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann J, Haneac C, Jolivet J, Wiesner M, Van Geen A, Bottero J (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity. Langmuir 24(7):3215–3222. doi:10.1021/la702998x

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero J, Lowry G, Jolivet J, Wiesner M (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641. doi:10.1038/nnano.2009.242

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2005) Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth. J Hazard Mater 124:125–132. doi:10.1016/j.jhazmat.2005.04.020

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2006) Adsorption of aromatic organic acids onto high area activated carbon cloth. J Hazard Mater 136:542–552. doi:10.1016/j.jhazmat.2005.12.029

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2007) Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy. J Hazard Mater 148:75–82. doi:10.1016/j.jhazmat.2007.02.006

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2009) In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Sep Sci Technol 44:3735–3752. doi:10.1080/01496390903182891

    Article  CAS  Google Scholar 

  • Ayranci E, Duman O (2010) Structural effects on the interactions of benzene and naphthalene sulfonates with activated carbon cloth during adsorption from aqueous solutions. Chem Eng J 156:70–76. doi:10.1016/j.cej.2009.09.038

    Article  CAS  Google Scholar 

  • Baker S, Satish S (2015) Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A 150:691–695. doi:10.1016/j.saa.2015.05.080

    Article  CAS  Google Scholar 

  • Balestra G (2014) Starch-based nanoparticles in sustainable agriculture. In: Proceedings in workshop on “Nanotechnology for the agricultural sector: from research to the field”. JRC Scientific and Policy Reports. European Commission. doi:10.2791/80497

  • Baruah S, Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–14. doi:10.1007/s10311-015-0542-2

    Article  CAS  Google Scholar 

  • Baruwati B, Polshettiwar V, Varma R (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930. doi:10.1039/B902184A

    Article  CAS  Google Scholar 

  • Batley G, Kirby J, McLaughlin M (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862. doi:10.1021/ar2003368

    Article  CAS  Google Scholar 

  • Beard M, Midgett A, Hanna M, Luther J, Hughes B, Nozik A (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10(8):3019–3027. doi:10.1021/nl101490z

    Article  CAS  Google Scholar 

  • Biener J, Stadermann M, Suss M, Worsley M, Biener M, Rose K, Baumann T (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667. doi:10.1039/C0EE00627K

    Article  CAS  Google Scholar 

  • Bin Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetate encapsulated in zinc-aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962. doi:10.1016/j.stam.2005.09.004

    Article  CAS  Google Scholar 

  • Bindhu M, Umadevi M (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta A 128:37–45. doi:10.1016/j.saa.2014.02.119

    Article  CAS  Google Scholar 

  • Boldyryeva H, Umeda N, Plaskin A, Takeda Y, Kishimoto N (2005) High-influence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Sur Coat Technol 196:373–377. doi:10.1016/j.surfcoat.2004.08.159

    Article  CAS  Google Scholar 

  • Brady-Estevez A, Schnoor M, Kang S, Elimelech M (2010) SWCNT-MWCNT hybrid filter attains high viral removal and bacterial inactivation. Langmuir 26(24):19153–19158. doi:10.1021/la103776y

    Article  CAS  Google Scholar 

  • Brunet L, Lyon D, Hotze E, Alvarez P, Wiesner M (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360. doi:10.1021/es803093t

    Article  CAS  Google Scholar 

  • Brunner T, Piusmanser P, Spohn P, Grass R, Limbach L, Bruinink A, Stark W (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi:10.1021/es052069i

    Article  CAS  Google Scholar 

  • Champion J, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934. doi:10.1073/pnas.0600997103

    Article  CAS  Google Scholar 

  • Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832. doi:10.1021/nl049170q

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:12–22. doi:10.1007/s10311-016-0600-4

    Article  CAS  Google Scholar 

  • Chin T, Kok H, Yit T, Abdul R, Sharif H, Soon H (2012) Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10:265–273. doi:10.1007/s10311-012-0356-4

    Article  CAS  Google Scholar 

  • Chinnamuthu C, Kokiladevi E (2007) Weed management through nanoherbicides. In: Chinnamuthu CR, Chandrasekaram B, Ramasamy C (eds) Application of nanotechnology in agriculture. Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Chompoosor A, Saha K, Ghosh P, Macarthy D, Miranda O, Zhu Z, Arcaro K, Rotello V (2010) The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 6(20):2246–2249. doi:10.1002/smll.201000463

    Article  CAS  Google Scholar 

  • Choucair M, Mauron P (2015) Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption. Int J Hydrogen Energy 40:6158–6164. doi:10.1016/j.ijhydene.2015.03.065

    Article  CAS  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094. doi:10.2147/IJN.S13532

    Article  CAS  Google Scholar 

  • Dasgupta N, Ramalingam Ch (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14:477–485. doi:10.1007/s10311-016-0583-1

    Article  CAS  Google Scholar 

  • Dhillon G, Brar S, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73. doi:10.3109/07388551.2010.550568

    Article  CAS  Google Scholar 

  • Diallo M (2009) Water treatment by dendrimer-enhanced filtration (DEF): principles and applications in Nanotechnology. Applications for clean water. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (ed) chapter 11. William Andrew Inc., Norwich. doi:10.1016/B978-0-8155-1578-4.50020-2

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3:10. doi:10.1088/2043-6262/3/3/033002

    Google Scholar 

  • Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19–23. doi:10.5681/apb.2015.003

    Google Scholar 

  • Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Zhu J, Lin L, Huang J, Sun D, Jia L, Li Q (2011) Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation. J Catal 283:192–201. doi:10.1016/j.jcat.2011.08.011

    Article  CAS  Google Scholar 

  • Duman O, Ayranci E (2005) Structural and ionization effects on the adsorption behaviors of some anilinic compounds from aqueous solution onto high-area carbon cloth. J Hazard Mater 120:173–181. doi:10.1016/j.jhazmat.2004.12.030

    Article  CAS  Google Scholar 

  • Duman O, Ayranci E (2006) Adsorption characteristics of benzaldehyde, sulphanilic acid and p-phenolsulfonate from water, acid or base solutions onto activated carbon cloth. Sep Sci Technol 41:3673–3692. doi:10.1080/01496390600915072

    Article  CAS  Google Scholar 

  • Duman O, Ayranci E (2010a) Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J Hazard Mater 174:359–367. doi:10.1016/j.jhazmat.2009.09.058

    Article  CAS  Google Scholar 

  • Duman O, Ayranci E (2010b) Attachment of benzo crown ethers onto activated carbon cloth to enhance the removal of chromium, cobalt and nickel ions from aqueous solutions by adsorption. J Hazard Mater 176:231–238. doi:10.1016/j.jhazmat.2009.11.018

    Article  CAS  Google Scholar 

  • Duman O, Tunc S, Polat TG (2015) Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Micropor Mesopor Mater 210:176–184. doi:10.1016/j.micromeso.2015.02.040

    Article  CAS  Google Scholar 

  • Duman O, Tunc S, Polat T, Bozoglan B (2016a) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym 147:79–88. doi:10.1016/j.carbpol.2016.03.099

    Article  CAS  Google Scholar 

  • Duman O, Tunc S, Bozoglan B, Polat T (2016b) Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite. J Alloys Compd 687:370–383. doi:10.1016/j.jallcom.2016.06.160

    Article  CAS  Google Scholar 

  • Durgun E, Ciraci S, Yildirim T (2008) Functionalization of carbon based nanostructures with light transition-metal atoms for hydrogen storage. Phys Rev B 77:085405. doi:10.1103/PhysRevB.77.085405

    Article  CAS  Google Scholar 

  • Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345:329–336. doi:10.1016/j.apsusc.2015.03.176

    Article  CAS  Google Scholar 

  • European Commission (2014) Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work. http://ec.europa.eu/progress

  • Ferk G, Stergar J, Makovec D, Hamler A, Jagli Z, Drofenik M, Ban I (2015) Synthesis and characterization of Ni-Cu alloy nanoparticles with a tunable Curie temperature. J Alloys Compd 648:53–58. doi:10.1016/j.jallcom.2015.06.067

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang T, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  • Garnett M, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–311. doi:10.1093/occmed/kql052

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah Abdul H (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem PhotobiolC Photochem Rev 9(1):1–12. doi:10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli T (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi:10.1021/jf302154y

    Article  CAS  Google Scholar 

  • Goodman C, McCusker C, Yilmaz T, Rotello V (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900. doi:10.1021/bc049951i

    Article  CAS  Google Scholar 

  • Gruère G, Narrod C, Abboot L (2011) Agriculture, food and water technologies for the poor opportunities and constrains policy Brief 19, June 2011. International Food Policy Research Institute (IFPRI). http://www.ifpri.org/sites/default/files/publications/bp019.pdf

  • Guang Lu et al (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. doi:10.1038/nchem.1272

    Article  CAS  Google Scholar 

  • Gurr J, Wang A, Chen C, Jan K (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73. doi:10.1016/j.tox.2005.05.007

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Dayem A, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 7:5901–5914. doi:10.2147/IJN.S37397

    Article  CAS  Google Scholar 

  • Hajipour M, Fromm K, Ashkarran A, Aberasturi D, Larramendi I, Rojo T, Serpooshan V, Parak W, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. doi:10.1016/j.tibtech.2012.06.004

    Article  CAS  Google Scholar 

  • Helmut Kaiser Consultancy Group (2015) Study: nanotechnology in Food and Food processing Industry 2008–2010–2015. http://www.hkc22.com/nanofood.html

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109–2113. doi:10.2147/IJN.S29854

    CAS  Google Scholar 

  • Hochella MF, Lower SK, Maurice PA (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635. doi:10.1126/science.1141134

    Article  CAS  Google Scholar 

  • Hoek E, Ghosh A (2009) Nanotechnology-based membranes for water purification in “Nanotechnology Applications for Clean Water”. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) chapter 4. William Andrew Inc., Norwich, NY. p 47. doi:10.1016/B978-0-8155-1578-4.50013-5

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi:10.1021/nl048715d

    Article  CAS  Google Scholar 

  • Huang J, Zhan G, Zheng B, Sun D, Lu F, Lin Y, Chen H, Zheng Z, Zheng Y, Li Q (2011) Biogenic silver nanoparticles by Cacumen Platycladi extract: synthesis, formation mechanism, and antibacterial activity. Eng Chem Res 50:9095–9106. doi:10.1021/ie200858y

    Article  CAS  Google Scholar 

  • Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.1016/j.tiv.2005.06.034

    Article  CAS  Google Scholar 

  • INSHT (Instituto Nacional de Seguridad e Higiene en el Trabajo) (2015) Seguridad y Salud en el trabajo con nanomaterials

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi:10.1039/c1gc15386b

    Article  CAS  Google Scholar 

  • Iyakutti K, Kawazoe Y, Rajarajeswari M, Surya V (2009) Aluminum hydride coated single-walled carbon nanotube as a hydrogen storage medium. Int J Hydrogen Energy 34:370–375. doi:10.1016/j.ijhydene.2008.09.086

    Article  CAS  Google Scholar 

  • Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43(7):2322–2327. doi:10.1021/es803268b

    Article  CAS  Google Scholar 

  • Johnston C (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279. doi:10.1180/claymin.2010.045.3.245

    Article  CAS  Google Scholar 

  • Kharissova O, Dias R, Kharisov B, Olvera Pérez B, Jiménez Pérez V (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248. doi:10.1016/j.tibtech.2013.01.003

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Zhongrui L, Watanabe F, Biris A (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. doi:10.1021/nn900887m

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi:10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kim H, Karkamkar A, Autrey T, Chupas P, Proffen T (2009) Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 MCM-41. J Am Chem Soc 131(38):13749–13755. doi:10.1021/ja904901d

    Article  CAS  Google Scholar 

  • Kim J, Lee C, Choi W (2010) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854. doi:10.1021/es101981r

    Article  CAS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A, Gaub H, Stozle S, Fertig N, Parak W (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. doi:10.1021/nl047996m

    Article  CAS  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2014) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol. doi:10.1111/1751-7915.12151

    Google Scholar 

  • Koeppenkastrop D, Decarlo E (1993) Uptake of rare-earth elements from solution by metal-oxides. Environ Sci Technol 27(9):1796–1802. doi:10.1021/es00046a006

    Article  CAS  Google Scholar 

  • Kruk T, Szczepanowicz K, Stefanska J, Socha R, Warszynski P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloid Surf B 128:17–22. doi:10.1016/j.colsurfb.2015.02.009

    Article  CAS  Google Scholar 

  • Laborie MPG (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials (chapter 9). Wiley, Chichester

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32. doi:10.4489/MYCO.2011.39.1.026

    Article  CAS  Google Scholar 

  • Lee J, Mackeyev Y, Cho M, Wilson L, Kim J, Alvarez P (2010) C(60) aminofullerene immobilized on silica as a visible light-activated photocatalyst. Environ Sci Technol 44(24):9488–9495. doi:10.1021/es1028475

    Article  CAS  Google Scholar 

  • Leistritz FL, Hodur N, Senechal D, Stowers M, McCalla D, Saffron C (2007) Biorefineries using agricultural residue feedstock in the great plains. AAE Report 07001 working paper, Agricultural Experiment Station, North Dakota State University, Department of Agribusiness and Applied Economics. https://ideas.repec.org/p/ags/nddssr/7323.html

  • Leroueil P, Hong S, Mecke A, Baker J, Orr B, Banaszak M (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342. doi:10.1021/ar600012y

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. doi:10.1002/smll.200700595

    Article  CAS  Google Scholar 

  • Li Z, Chen JF, Liu F (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246. doi:10.1002/ps.1301

    Article  CAS  Google Scholar 

  • Lim K, Kazemian H, Yaakob Z, Daud W (2010) Solid-state materials and methods for hydrogen storage: a critical review. Chem Eng Technol 33:213–226. doi:10.1002/ceat.200900376

    Article  CAS  Google Scholar 

  • Limbach L, Wick P, Manser P, Grass R, Bruinink A, Stark W (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163. doi:10.1021/es062629t

    Article  CAS  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275. doi:10.1016/j.materresbull.2006.04.014

    Article  CAS  Google Scholar 

  • Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62. doi:10.1002/adma.200903328

    Article  CAS  Google Scholar 

  • Liu S, Zeng T, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980. doi:10.1021/nn202451x

    Article  CAS  Google Scholar 

  • Liu J, Notarianni M, Ll Rintou, Motta N (2014) Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods. Beilstein J Nanotechnol 5:485–493. doi:10.3762/bjnano.5.56

    Article  CAS  Google Scholar 

  • Lochan R, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370. doi:10.1039/B515409J

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu W, Sun H, Tam P, Chiu J, Che C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1021/pr0504079

    Article  CAS  Google Scholar 

  • Lu S, Chiu H, Liu CT (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45(8):2850–2855. doi:10.1021/ie051206h

    Article  CAS  Google Scholar 

  • Machado S, Pinto S, Grosso J, Nouws H, Albergaria J, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8. doi:10.1016/j.scitotenv.2012.12.033

    Article  CAS  Google Scholar 

  • Mahmood M (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 30(1–2):531–535. doi:10.1016/j.matchemphys.2011.07.018

    Article  CAS  Google Scholar 

  • Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115:18275–18283. doi:10.1021/jp2056255

    Article  CAS  Google Scholar 

  • Mathew AP, Laborie M, Oksman K (2009) Cross-linked chitosan-chitin whiskers nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10(6):1627–1632. doi:10.1021/bm9002199

    Article  CAS  Google Scholar 

  • McNicholas P, Wang A, O’Neill K, Anderson R, Stadie N, Kleinhammes A, Parilla P, Simpson L, Ahn C, Wang Y, Wu Y, Liu J (2010) H2 storage in microporous carbons from PEEK precursors. J Phys Chem C 114:13902–13908. doi:10.1021/jp102178z

    Article  CAS  Google Scholar 

  • Meena M, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A 137:185–192. doi:10.1016/j.saa.2014.08.079

    Article  CAS  Google Scholar 

  • Milani N, McLaughlin M, Stacey SP (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998. doi:10.1021/jf205191y

    Article  CAS  Google Scholar 

  • Moaveni P, Talebi R, Farahani H, Maroufi K, Maroufi K (2011) Study of TiO2 nano particles spraying effect on the some physiological parameters in Barley (Hordem Vulgare L.). Adv Environ Biol 5(7):1663–1667

    CAS  Google Scholar 

  • Murphy K (2008) Nanotechnology: agriculture’s next “Industrial” revolution, 3-5. Financial Partner, Spring pp 3–5

  • Namazi H, Adeli M, Zarnegar Z Jafari, Dadkhah S, Shukla A (2007) Encapsulation of nanoparticles using linear–dendritic macromolecules. Colloid Polym Sci 285(14):1527–1533. doi:10.1007/s00396-007-1717-6

    Article  CAS  Google Scholar 

  • Nanotechnology in Agriculture: Scope and Current Relevance (2013). National Academy of Agricultural Sciences, New Delhi, December 2013. Policy Paper. https://es.scribd.com/document/244339453/Nano-in-agriculture-scope-current-relevance-pdf

  • Narayanan K, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface 156:1–13. doi:10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K (2010) Synthesis of copolymer stabilized silver nanoparticles for coating materials. Colloid Polym Sci 288:543–553. doi:10.1007/s00396-009-2178-x

    Article  CAS  Google Scholar 

  • Nozik J (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11. doi:10.1016/j.cplett.2008.03.094

    Article  CAS  Google Scholar 

  • Owolade O, Ogunleti D (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 48(3):329–336

    Article  Google Scholar 

  • Papp T, Schiffmannp D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27. doi:10.1080/17435390701847935

    Article  CAS  Google Scholar 

  • Park T, Lee K, Lee S (2016) Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol 100:521–534. doi:10.1007/s00253-015-6904-7

    Article  CAS  Google Scholar 

  • Parsons J, Peralta-Videa J, Gardea-Torresdey J (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Environ Sci 5:463–485. doi:10.1016/S1474-8177(07)05021-8

    CAS  Google Scholar 

  • Pendergast M, Hoek E (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971. doi:10.1039/c0ee00541j

    Article  CAS  Google Scholar 

  • Pendergast M, Nygaard J, Ghosh K, Hoek E (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263. doi:10.1016/j.desal.2010.06.008

    Article  CAS  Google Scholar 

  • Petersen E, Nelson B (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650. doi:10.1007/s00216-010-3881-7

    Article  CAS  Google Scholar 

  • Peter-Varbanets M, Zurbrugg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265. doi:10.1016/j.watres.2008.10.030

    Article  CAS  Google Scholar 

  • Pişkin S, Palantöken A, Yılmaz M (2013) Antimicrobial activity of synthesized TiO2 nanoparticles. In: International conference on emerging trends in engineering and technology (ICETET’2013) Dec 7–8, 2013 Patong Beach, Phuket (Thailand)

  • Prucek R, Tucek J, Kilianová M, Panácek A, Kvítek L, Filip J, Kolár M, Tománková Katerina, Zboril R (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713. doi:10.1016/j.biomaterials.2011.03.039

    Article  CAS  Google Scholar 

  • Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674. doi:10.1039/C0EE00295J

    Article  CAS  Google Scholar 

  • Rahaman M, Vecitis C, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46(3):1556–1564. doi:10.1021/es203607d

    Article  CAS  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852. doi:10.1111/j.1365-2672.2012.05253.x

    Article  CAS  Google Scholar 

  • Ranjan S, Ramalingan Ch (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen generation. Environ Chem Lett 14:487–494. doi:10.1007/s10311-016-0586-y

    Article  CAS  Google Scholar 

  • Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231. doi:10.1016/j.seppur.2006.12.006

    Article  CAS  Google Scholar 

  • Ravindran A, Chandran P, Khan S (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloid Surface B 105:342–352. doi:10.1016/j.colsurfb.2012.07.036

    Article  CAS  Google Scholar 

  • Regulatory Considerations for Nanopesticides and Veterinary Nanomedicines (2014) A draft APVMA report. Australian Governement. https://apvma.gov.au/sites/default/files/docs/report-draft-regulatory-considerations-nanopesticides-veterinary-nanomedicines.pdf

  • Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Micropor Mesopor Mater 179:151–156. doi:10.1016/j.micromeso.2013.05.025

    Article  CAS  Google Scholar 

  • Sanchez-Mendieta V, Vilchis-Nestor A (2012) Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts. In: Yen-Hsun S (ed) Noble metals, INTECH, pp 391–408. doi:10.5772/34335

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566. doi:10.1016/j.materresbull.2011.07.046

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A 97:1140–1144. doi:10.1016/j.saa.2012.07.096

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman A, Jayaseelan Ch, Rajakumar G, Marimuthu S, Kirthi A, Velayutham K, Thomas J, Venkatesan J, Kim S (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Dis. doi:10.1016/S1995-7645(14)60171-1

    Google Scholar 

  • Santos C, Albuquerque R, Sampaio F, Keyson D (2013) Nanomaterials with antimicrobial properties: applications in health sciences. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. http://www.formatex.info/microbiology4/vol1/143-154.pdf

  • Sassolas A, Blum L, Leca-Bouvier B (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511. doi:10.1016/j.biotechadv.2011.09.003

    Article  CAS  Google Scholar 

  • Saxena R, Williams W, Mcgee J, Daniels M, Boykin E, Gilmour I (2007) Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1:291–300. doi:10.1080/17435390701803110

    Article  CAS  Google Scholar 

  • Schneider J (2007) Can microparticles contribute to inflammatory bowel disease: innocuous or inflammatory? Exp Biol Med 232:1–2

    CAS  Google Scholar 

  • Scott N, Chen H (2003) Nanoscale science and engineering on agriculture and food systems. In: Roadmap report of national planning workshop. Washington DC, November 18–19, 2002. http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Sculley J, Yuan D, Zhou H (2011) The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environ Sci 4:2721–2735. doi:10.1039/C1EE01240A

    Article  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi:10.1039/c1cs15188f

    Article  CAS  Google Scholar 

  • Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and waste water. Environ Technol 30(6):583–609. doi:10.1080/09593330902838080

    Article  CAS  Google Scholar 

  • Singh S, Kumar B, Yadav S, Gupta K (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5(1):1–5. doi:10.3923/rjnn.2015.1.5

    Article  Google Scholar 

  • Smuleac V, Varmab R, Sikdarb S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379:131–137. doi:10.1016/j.memsci.2011.05.054

    Article  CAS  Google Scholar 

  • Song Y, Li X, Du X (2009) Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567. doi:10.1183/09031936.00178308

    Article  CAS  Google Scholar 

  • Stebounova L, Guio E, Grassian V (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation and dissolution. J Nanopart Res 13(1):233–244. doi:10.1007/s11051-010-0022-3

    Article  CAS  Google Scholar 

  • Sugunan A, Warad H, Thanachayamont C, Dutta J and Hoffmann H (2005) Zinc oxides nanowires on non-epitaxial substrates from colloidal processing for gas sensing applications. In: Vaseashta A, Dimova-Malinovska D, Marshall J (eds) Proceedings of NATO advanced study institute on nanostructured and advanced materials for applications in sensors, optoelectronic and photovoltaic technology, (NATO Science Series II: Mathematics, Physics and Chemistry, vol 204) XI, Springer, Berlin, p 425

  • Sukla AK, Iravani S (2017) Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett. doi:10.1007/s10311-017-0618-2

    Google Scholar 

  • Surya V, Iyakutti K, Rajarajeswari M, Kawazoe Y (2009) Functionalization of single-walled carbon nanotube with borane for hydrogen storage. Physica E 41:1340–1346. doi:10.1016/j.physe.2009.03.007

    Article  CAS  Google Scholar 

  • Surya V, Iyakutti K, Venkataramanan N, Mizuseki H, Kawazoe Y (2010) The role of Li and Ni metals in the adsorbate complex and their effect on the hydrogen storage capacity of single walled carbon nanotubes coated with metal hydrides, LiH and NiH2. Int J Hydrog Energy 35:2368–2376. doi:10.1016/j.ijhydene.2010.01.001

    Article  CAS  Google Scholar 

  • Sweet J, Chesser A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:13–42. doi:10.1016/B978-0-12-394381-1.00005-2

    Google Scholar 

  • Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul R (2012a) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4:1–5. doi:10.1166/asem.2012.1160

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012b) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89. doi:10.1166/jbns.2012.1077

    Article  CAS  Google Scholar 

  • Tegos P, Demidova N, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin M (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135. doi:10.1016/j.chembiol.2005.08.014

    Article  CAS  Google Scholar 

  • Tetreault N, Arsenault E, Heiniger L, Soheilnia N, Brillet J, Moehl S, Zakeeruddin G, Ozin A, Grätzel M (2011) High-efficiency dye-sensitized solar cell with three-dimensional photoanode. Nano Lett 11:4579–4584. doi:10.1021/nl201792r

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarker S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176–1181. doi:10.1039/c0nr00722f

    Article  CAS  Google Scholar 

  • Trivedi P, Axe L (2000) Modelling Cd and Zn sorption to hydrous metal oxides. Environ Sci Technol 34(11):2215–2223. doi:10.1021/es991110c

    Article  CAS  Google Scholar 

  • Varma S (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. doi:10.1016/j.coche.2011.12.002

    Article  CAS  Google Scholar 

  • Vecitis C, Zodrow K, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479. doi:10.1021/nn101558x

    Article  CAS  Google Scholar 

  • Vecitis C, Schnoor H, Rahaman S, Schiffman J, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45(8):3672–3679. doi:10.1021/es2000062

    Article  CAS  Google Scholar 

  • Vörösmarty C, McIntyre P, Gessner M, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S, Sullivan C, Liermann C, Davies P (2010) Global threats to human water security and river biodiversity. Nature. doi:10.1038/nature09440

    Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gai Y, Li B, Sun J, Li Y, Jiao F, Zhan Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Let 168(2):176–185. doi:10.1016/j.toxlet.2006.12.001

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel A (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 23:2121–2134. doi:10.1021/nn800511k

    Article  CAS  Google Scholar 

  • Xiaolei Q, Alvarez J, Qilin L (2013) Applications of nanotechnology in water and waste water treatment. Water Res 47:3931–3946. doi:10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem 13:900–904. doi:10.1039/c0gc00772b

    Article  CAS  Google Scholar 

  • Xiu Z, Ma J, Alvarez P (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008. doi:10.1021/es201918f

    Article  CAS  Google Scholar 

  • Xiu Z, Zhang Q, Puppala H, Colvin V, Alvarez P (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. doi:10.1021/nl301934w

    Article  CAS  Google Scholar 

  • Xue X, Cheng R, Shi L, Zhong M, Zheng X (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27. doi:10.1007/s10311-016-0595-x

    Article  CAS  Google Scholar 

  • Yadav S, Tam J, Veer Singh Ch (2015) A first principles study of hydrogen storage on lithium decorated two dimensional carbon allotropes. Int J Hydrog Energy 40:6128–6136. doi:10.1016/j.ijhydene.2015.03.038

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya B (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A137:236–243. doi:10.1016/j.saa.2014.08.030

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110(10):5989–6008. doi:10.1021/cr100059s

    Article  CAS  Google Scholar 

  • Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42(21):7931–7936. doi:10.1021/es801463v

    Article  CAS  Google Scholar 

  • Yao K, Li S, Tzeng T, Cheng C, Chang C (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516. doi:10.4028/www.scientific.net/AMR.79-82.513

    Article  CAS  Google Scholar 

  • Yavuz C, Mayo J, Yu W, Prakash A, Falkner C, Yean S, Cong L, Shipley H, Kan A, Tomson M, Natelson D, Colvin V (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964–967. doi:10.1126/science.1131475

    Article  Google Scholar 

  • Yong J, Kwon E, Soo B (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164. doi:10.1007/s00449-009-0373-2

    Article  CAS  Google Scholar 

  • Zhan G, Huang J, Du M, Sun D, Abdul-Rauf I, Lin W, Hong Y, Li Q (2012) Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: high activity and durability. Chem Eng J 187:232–238. doi:10.1016/j.cej.2012.01.051

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang G, Wong Ka W, Zheng Z (2010) Green synthesis of indium oxide hollow spheres with specific sensing activities for flammable organic vapors. Sensor Lett 8:355–361. doi:10.1166/sl.2010.1277

    Article  CAS  Google Scholar 

  • Zhang Q, Yodyingyong S, Xi J, Myers D, Cao G (2012) Oxide nanowires for solar cell applications. Nanoscale 4:436–1445. doi:10.1039/C2NR11595F

    Google Scholar 

  • Zhang Q, Uchaker E, Candelaria S, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. doi:10.1039/c3cs00009e

    Article  CAS  Google Scholar 

  • Zhao M, Xia Q, Feng X, Zhu X, Mao Z, Jiand L, Wang K (2010) Synthesis, biocompatibility and cell labeling of l-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31:4401–4408. doi:10.1016/j.biomaterials.2010.01.114

    Article  CAS  Google Scholar 

  • Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin L, Li Q, Lin L, Du M (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5:1351–1359. doi:10.1007/s11671-010-9652-8

    Article  CAS  Google Scholar 

  • Zhu Z, Wang H, Yan B, Zheng H, Jiang Y, Miranda O, Rotello V, Xing B, Vachet R (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398. doi:10.1021/es301977w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Spanish Ministry of Economy and Competitiveness (MINECO) and JJCC Castilla-La Mancha are gratefully acknowledged for funding this work with Grants CTQ2016-78793-P and JCCM PEIC- 2014-001-P, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Ríos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villaseñor, M.J., Ríos, Á. Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 16, 11–34 (2018). https://doi.org/10.1007/s10311-017-0656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0656-9

Keywords

  • Nanoadsorbents
  • Nanophotocatalysis
  • Solid-state hydrogen storage
  • Solar cells
  • Green synthesis
  • Toxicity