Abstract
Volatile organic compounds are a major source of air pollutants. Absorption is an effective solution to treat polluted air loaded with volatile organic compounds, but most actual absorbents are often toxic and non-biodegradable. Here, we tested eutectic solvent mixtures for the absorption of volatile organic compounds for the first time. The affinity of solvent mixtures for toluene, acetaldehyde and dichloromethane was determined by measuring vapour–liquid partition coefficients and liquid phase absorption capacities. Results show that the vapour–liquid partition coefficients vary, at 30 °C, from close to zero for acetaldehyde in the mixtures choline chloride:urea, choline chloride:glycerol and tetrabutylphosphonium bromide:glycerol to 0.124 for dichloromethane in the choline chloride:urea eutectic mixture. These values are similar or even superior to those published for ionic liquids and organic solvents. Solvents based on choline chloride, a food additive, and urea, can solubilize up to 500 times more volatile organic compounds compare to water. Moreover, deep eutectic solvents are easier to prepare and more biodegradable than ionic liquids, which are also toxic. Deep eutectic solvents are more biodegradable than silicone oils, which are also expensive. Furthermore, in terms of recycling, the absorption capacities of the tested solvents remained unchanged during five absorption–desorption cycles. These findings are patented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bedia J, Ruiz E, de Riva J et al (2013) Optimized ionic liquids for toluene absorption. AIChE J 59:1648–1656. doi:10.1002/aic.13926
Blach P, Fourmentin S, Landy D et al (2008) Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70:374–380. doi:10.1016/j.chemosphere.2007.07.018
Darracq G, Couvert A, Couriol C et al (2010) Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol 85:309–313. doi:10.1002/jctb.2331
Ferreira M, Jérôme F, Bricout H et al (2015) Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N, N′-dimethylurea. Catal Commun 63:62–65. doi:10.1016/j.catcom.2014.11.001
Fourmentin S, Outirite M, Blach P et al (2007) Solubilisation of chlorinated solvents by cyclodextrin derivatives. A study by static headspace gas chromatography and molecular modelling. J Hazard Mater 141:92–97. doi:10.1016/j.jhazmat.2006.06.090
Francisco M, van den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (lttms): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085. doi:10.1002/anie.201207548
Heymes F, Manno-Demoustier P, Charbit F et al (2006) A new efficient absorption liquid to treat exhaust air loaded with toluene. Chem Eng J 115:225–231. doi:10.1016/j.cej.2005.10.011
Jérôme F, Ferreira M, Bricout H et al (2014) Low melting mixtures based on β-cyclodextrin derivatives and N, N′-dimethylurea as solvents for sustainable catalytic processes. Green Chem 16:3876–3880. doi:10.1039/C4GC00591K
Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. doi:10.1016/S0950-4230(00)00007-3
Kolb B, Ettre LS (2006) Static headspace-gas chromatography: theory and practice, 2nd edn. Wiley, Hoboken
Kudłak B, Owczarek K, Namieśnik J (2015) Selected issues related to the toxicity of ionic liquids and deep eutectic solvents-a review. Environ Sci Pollut Res 22:11975–11992. doi:10.1007/s11356-015-4794-y
Paiva A, Craveiro R, Aroso I et al (2014) Natural deep eutectic solvents—solvents for the 21st Century. ACS Sustain Chem Eng 2:1063–1071. doi:10.1021/sc500096j
Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:37–41. doi:10.1080/10643380701413658
Pham TPT, Cho CW, Yun YS (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372. doi:10.1016/j.watres.2009.09.030
Quijano G, Couvert A, Amrane A et al (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. doi:10.1016/j.ces.2011.01.047
Quijano G, Couvert A, Amrane A et al (2013) Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids. Water Air Soil Pollut 224:1528. doi:10.1007/s11270-013-1528-y
Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ et al (2017) Ionic liquid technology to recover volatile organic compounds (VOC). J Hazard Mater 321:484–499. doi:10.1016/j.jhazmat.2016.09.040
Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. doi:10.1021/cr300162p
Staudinger J, Roberts PV (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44:561–576. doi:10.1016/S0045-6535(00)00505-1
Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705. doi:10.1016/j.envint.2007.02.011
Wen Q, Chen JX, Tang YL et al (2015) Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–69. doi:10.1016/j.chemosphere.2015.02.061
Zhang Q, De Vigier KO, Royer S et al (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108. doi:10.1039/c2cs35178a
Acknowledgements
Authors are grateful to the French Environment and Energy Management Agency (ADEME) for the financial support of this project (CORTEA 1401C0035). T. M. acknowledges the financial support from both the ADEME thesis programme and the PMCO (Pôle Métropolitain Côte d’Opale, France).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moura, L., Moufawad, T., Ferreira, M. et al. Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ Chem Lett 15, 747–753 (2017). https://doi.org/10.1007/s10311-017-0654-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-017-0654-y