H and O isotopic differences in typhon and urban-induced heavy rain in Tokyo

Abstract

Stable isotope ratios of hydrogen and oxygen of water are useful tracers of the hydrological cycle. For example, isotopes monitor the evapotranspiration in vegetated areas, local snow ice processes and stream water flow processes. δ18O and δD in rainwater reflect the processes of evaporation, condensation and precipitation. Heavy rains thus modify the stable isotope ratio of ground water, stream water and transpiration water vapor. However, the controlling factors of δ18O and δD are not clear. Here we analyzed the inorganic ion concentration and stable isotope ratio in 38 normal rainwater and 15 heavy rainwater samples were collected in Shinjuku, Tokyo, Japan, during four years from October 2012 to December 2015. Results show a decrease in δ18O and δD values with the total rainfall amount, thus highlighting the amount effect. δ18O and δD volume-weighted mean values in typhoon heavy rain were higher than the values estimated from amount effect, whereas δ18O and δD volume-weighted mean values in urban-induced heavy rain were lower. Typhoon heavy rain has high Na+ ratio and stable isotope ratios, while urban-induced heavy rain has low Na+ ratio and stable isotope ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Atkinson BW (1971) The effect of an urban area on the precipitation from a moving thunderstorm. J Appl Meteorol 10:47–55. doi:10.1175/1520-0450

    Article  Google Scholar 

  2. Changnon SA Jr (1968) The la porte weather anomaly—fact or fiction? Bull Am Meteorol Soc 49:4–11. doi:10.4236/acs.2014.42027

    Google Scholar 

  3. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Boca Raton, pp 1–77

    Google Scholar 

  4. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    CAS  Article  Google Scholar 

  5. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi:10.1111/j.2153-3490.1964.tb00181.x

    Article  Google Scholar 

  6. Dou J, Wang Y, Bornstein R, Miao S (2015) Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J Appl Meteorol 54:94–105. doi:10.1175/JAMC-D-13-0355.1

    Article  Google Scholar 

  7. Fudeyasu H, Ichiyanagi K, Sugimoto A, Yoshimura K, Ueta A, Yamada MD (2008) Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan. J Geophys Res 113:D12113. doi:10.1029/2007JD009313

    Article  Google Scholar 

  8. Fujibe F (2004) Effect of heat island to precipitation: convective precipitation in summer. TENKI 51:109–115

    Google Scholar 

  9. Fujibe F, Sakagami K, Chubachi K, Yamashita K (2002) Surface wind patterns in Tokyo in the preceding afternoon short-time heavy rainfall of midsummer days. TENKI 49:395–405

    Google Scholar 

  10. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    CAS  Article  Google Scholar 

  11. Hiyama T, Abe O, Kurita N, Fujita K, Ikeda K, Hashimoto S, Tsujimura M, Yamanaka T (2008) Review and perspective on the water cycle processes using stable isotope of water. J Jpn Soc Hydrol Water Res 21:158–176

    Article  Google Scholar 

  12. Jauregui E, Romales E (1996) Urban effects on convective precipitation in Mexico City. Atmos Environ 30:3383–3389. doi:10.1016/1352-2310

    CAS  Article  Google Scholar 

  13. Kendall C, Mcdonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 1–202

    Google Scholar 

  14. Mikami T, Yamato H, Ando H, Yokoyama H, Yamaguchi T, Ichino M, Akiyama Y, Ishii K (2005) Climatological study on the summer intensive heavy rainfall in Tokyo. In: Annual report of the Tokyo Metropolitan Research Institute for Environmental Protection, pp 33–42

  15. Ogura Y (1999) General meteorology, 2nd edn. University of Tokyo Press, Tokyo, pp 99–102

    Google Scholar 

  16. Okamoto M, Ushikubo A (1999) Deposition of ions originating in sea salt in acid rain. Bull Soc Sea Water Sci Jpn 52:364–372

    Google Scholar 

  17. Risi C, Bony S, Vimeux F (2008) Influence of convective processes on the isotopic composition (d18O and dD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J Geophys Res 113:D19306. doi:10.1029/2008JD009943

    Article  Google Scholar 

  18. Suzuki K, Endo Y (2001) Oxygen isotopic composition of winter precipitation in central Japan. J Geophys Res 106:7243–7244. doi:10.1029/2000JD900678

    CAS  Article  Google Scholar 

  19. Toshima City Office (2013) http://www.city.toshima.lg.jp/153/machizukuri/sumai/kogai/kotsu/033120.html. Accessed 06 Dec 16

  20. Uchiyama R, Okochi H, Ogata H, Katsumi N, Asai D, Nakano T (2017) Geochemical and stable isotope characteristics of urban heavy rain in the downtown of Tokyo, Japan. Atmos Res 194:109–118. doi:10.1016/j.atmosres.2017.04.029

    CAS  Article  Google Scholar 

  21. Yabusaki S, Kono T (2012) Characteristics of stable isotopes in precipitation at Kyoto basin. Bull Geo Environ Sci 14:23–30

    Google Scholar 

  22. Yabusaki S, Tase N (2004) Characteristics of the δ18O and δD in the case of typhoons at Tsukuba in 2001 and 2002. Bull Terrest Environ Res Cent Univ Tsukuba 5:29–39

    Google Scholar 

Download references

Acknowledgements

This research partly supported by the Nippon Life Insurance Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryunosuke Uchiyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uchiyama, R., Okochi, H., Ogata, H. et al. H and O isotopic differences in typhon and urban-induced heavy rain in Tokyo. Environ Chem Lett 15, 739–745 (2017). https://doi.org/10.1007/s10311-017-0652-0

Download citation

Keywords

  • Stable isotopes
  • Water vapor source
  • Sea salt
  • Rain formation process