Skip to main content

Advertisement

Log in

Geologic materials and gamma radiation in the built environment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Human exposure to natural ionizing radiation is due to both internal sources such as ingestion and inhalation of radioactive isotopes, and external sources from cosmic radiation and primordial radionuclides present in the Earth crust. Primordial radionuclides are 40K and radioisotopes of the decay series of 238U and 232Th, which emit gamma radiation at low doses. Gamma emission can occur both in outdoor, due to background geologic radiation, and in indoor spaces, due to the use of geologic materials in dwellings. This radiation has received less attention than man-made sources because it contributes less to the total doses that affect humans, on the average. However, there are geographical areas and rocks used as building materials that contain high concentrations of radionuclides, thus being a source of relatively high gamma dose exposures. Assessing exposure is difficult, especially in indoor situations where there are marked variations regarding materials application. Nonetheless, some measures and regulations to control such dose exposures on building materials have been suggested. This article reviews gamma radiation in geologic materials used for buildings. We discuss: (1) procedures that relate radionuclide contents in building materials to external gamma radiation, considering namely indoor applications and that are used for establishing restrictions on building materials commerce; (2) relation of rock radionuclide contents with their geologic history that can lead to listing of some geologic materials as potentially hazardous in terms of gamma radiation; and (3) the implications for the European regulation, which has an universal criteria that might be excessively restrictive for the commerce of geologic materials used in small amounts, and does not have provisions regarding existing structures where geologic materials are used in extended amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdurabu WA, Ramli AT, Saleh MA, Heryansyah A, Alnhary A, Fadhl S (2016) Terrestrial gamma dose rate, radioactivity and radiological hazards in the rocks of an elevated radiation background in Juban District, Ad Dali’ Governorate, Yemen. J Radiol 36(1):163–177. doi:10.1088/0952-4746/36/1/163

    CAS  Google Scholar 

  • Åkerblom G, Mjönes L, Annanmäki M, Magnusson S, Strand T, Ulbak K (2000) Naturally occurring radioactivity in the Nordic countries—recommendations in the Nordic countries. The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden. ISBN 91-89230-00-0

  • Anderson DL (1989) Theory of the earth. Blackwell Scientific Publications, Boston. ISBN 0865423350. http://resolver.caltech.edu/CaltechBOOK:1989.001

  • Anjos RM, Ayub JJ, Cid AS, Cardoso R, Lacerda T (2011) External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites. J Environ Radioact 102(11):1055–1061. doi:10.1016/j.jenvrad.2011.06.001

    Article  CAS  Google Scholar 

  • Asghar M, Tufail M, Sabiha-Javied, Abid A, Waqas M (2008) Radiological implications of granite of northern Pakistan. J Radiol Prot 28(3):387–399. doi:10.1088/0952-4746/28/3/009

    Article  CAS  Google Scholar 

  • Batista MJ, Torres L, Leote J, Prazeres C, Saraiva J, Carvalho J (2013) Carta Radiométrica de Portugal (1:500 000). Laboratório de Energia e Geologia, Lisbon. ISBN 978-989-675-027-5

    Google Scholar 

  • Bavarnegin E, Vahabi-moghaddam M, Babakhani A, Fathabadi N (2012) Analytical study of radionuclide concentration and radon exhalation rate in market available building materials of Ramsar. J Theor Appl Phys 6(1):5. doi:10.1186/2251-7235-6-5

    Article  Google Scholar 

  • Bavarnegin E, Fathabadi N, Vahabi Moghaddam M, Vasheghani Farahani M, Moradi M, Babakhni A (2013) Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran. J Environ Radioact 117:36–40. doi:10.1016/j.jenvrad.2011.12.022

    Article  CAS  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  CAS  Google Scholar 

  • Bea F (1999a) Elements: heat-producing. In: Marshall CP, Fairbridge RW (eds) Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, pp 208–209. ISBN 0-412-75500-9

    Google Scholar 

  • Bea, F. (1999b). Uranium: Element and geochemistry. In Encyclopedia of Geochemistry (pp. 645–648), ed. Clare P. Marshall, Rhodes W. Fairbridge. Dordrecht: Kluwer Academic Publishers. ISBN: 0-412-75500-9

  • Bochicchio F, Nuccetelli C, The SETIL Working Group (2004) A method to evaluate the contribution of building material to indoor gamma dose rate through outdoor measurements: preliminary results. Radiat Prot Dosim 111(4):413–416. doi:10.1093/rpd/nch064

    Article  Google Scholar 

  • Bochiolo M, Verdoya M, Chiozzi P, Pasquale V (2012) Radiometric surveying for the assessment of radiation dose and radon specific exhalation in underground environment. J Appl Geophys 83:100–106. doi:10.1016/j.jappgeo.2012.05.004

    Article  Google Scholar 

  • Bourdon B, Turner S, Henderson GM, Lundstrom CC (2003) Introduction to U-series Geochemistry. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry, vol 52. Geochemical Society and Mineralogical Society of America, Washington, DC, pp 1–12

  • Boyle RW (1982) Geochemical prospecting for thorium and uranium deposits. Elsevier, New York, p 489

    Google Scholar 

  • Brookins DG (1988) Eh-PH diagrams for geochemistry. Springer, Berlin

    Book  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000) The effects of gamma rays on longevity. Biogerontology 1(4):309–319

    Article  CAS  Google Scholar 

  • Calpéna S (2012) EU regulatory progress for NORM & building materials. In: WEACAU-III, international workshop on environmental aspects of coal ash utilization Tel Aviv, Israel December 11th–12th, 2012

  • Carny P (2007) Radioactivity in the air. In: Pöschl M, Nollet LML (eds) Radionuclide concentrations in food and the environment. Taylor & Francis, Boca Raton, pp 37–57

    Google Scholar 

  • CBS-Canada Border Services Agency (2015) Memorandum D10-17-38: administrative policy—tariff classification of marble and granite blocks and slabs. Ottawa, Canada. http://www.cbsa-asfc.gc.ca/publications/dm-md/d10/d10-17-38-eng.pdf

  • CEU—Council of the European Union (1996) Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Off J Eur Union L 159/1

  • CEU—Council of the European Union (2014) Council directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J Eur Union L 13/1

  • Chabaux F, Riotte J, Dequincey O (2003) U-Th-Ra fractionation during weathering and river transport. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry, vol 52. Geochemical Society and Mineralogical Society of America, Washington, DC, pp 533–576

  • Chen C-J, Lin Y-M (1996) Assessment of building materials for compliance with regulations of ROC. Environ Int 22:221–226. doi:10.1016/S0160-4120(96)00111-0

    Article  Google Scholar 

  • Chen B, Wang Q, Zhuo W (2015) Assessment of gamma dose rate in dwellings due to decorative stones. Radiat Prot Dosim 167(1–3):251–254. doi:10.1093/rpd/ncv256

    Article  CAS  Google Scholar 

  • Chiu CF, Ng CWW (2014) Relationship between chemical weathering indices and physical and mechanical properties of decomposed granite. Eng Geol 179:76–89

    Article  Google Scholar 

  • Craig JR, Vaughan DJ (1994) Ore microscopy and ore petrography, 2nd edn. Wiley, New York. ISBN 0-471-55175-9. http://www.minsocam.org/msa/OpenAccess_publications/Craig_Vaughan/

  • Cresswell AJ, Sanderson DCW, Harrold M, Kirley B, Mitchell C, Weir A (2013) Demonstration of lightweight gamma spectrometry systems in urban environments. J Environ Radioact 124:22–28. doi:10.1016/j.jenvrad.2013.03.006

    Article  CAS  Google Scholar 

  • CUMV-Committee on Uranium Mining in Virginia, Committee on Earth Resources, Board on Earth Sciences and Resources & Division on Earth and Life Studies (2012) Uranium mining in Virginia: scientific, technical, environmental, human health and safety, and regulatory aspects of uranium mining and processing in Virginia. National Academies Press, Washington. doi:10.17226/13266

    Google Scholar 

  • Dunai TJ (2010) Cosmogenic nuclides. Principles, concepts and applications in the Earth surface sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dziri S, Nachab A, Nourreddine A, Sellam A, Gelus D (2013) Experimental and simulated effective dose for some building materials in France. World J Nucl Sci Technol 3:41–45. doi:10.4236/wjnst.2013.32007

    Article  Google Scholar 

  • EC-European Comission (1999) Radiation protection 112—radiological protection principles concerning the natural radioactivity in building materials. European Comission, Luxemburg

  • Eisenbud M, Gesell T (1997) Environmental radioactivity From natural, industrial and military sources, vol4. Academic Press, San Diego

    Google Scholar 

  • El-Bahi SM, El-Dine NW, Ahmed F, Sroor A, Abdl Salaam MMA (2005) Natural radioactivity levels for selected kinds of Egyptian sand. Isot Environ Health Stud 41(772815469):161–168. doi:10.1080/10256010500054019

    Article  CAS  Google Scholar 

  • El-Shershaby A (2002) Study of radioactivity levels in granite of Gable Gattar II in the north eastern desert of Egypt. Appl Radiat Isot 57(1):131–135. doi:10.1016/S0969-8043(02)00067-2

    Article  CAS  Google Scholar 

  • El-Taher a (2012) Assessment of natural radioactivity levels and radiation hazards for building materials used in Qassim area, Saudi Arabia. Rom Rep Phys 57:726–735

    CAS  Google Scholar 

  • Erees FS (2006) Natural Radionuclides in the building materials used in Manisa City. Indoor and Built Environment, Turkey. doi:10.1177/1420326X06069059

    Google Scholar 

  • Fowler CMR (2005) The solid earth: an introduction to global geophysics, 2nd edn. Cambridge University Press, Cambridge. ISBN 9780521893077

    Google Scholar 

  • Gaffney JS, Marley NA (2007) Radionuclide sources. In: Pöschl M, Nollet LML (eds) Radionuclide concentrations in food and the environment. Taylor & Francis, Boca Raton, pp 23–36

    Google Scholar 

  • Garcia-Guinea J, Fernandez-Cortes A, Alvarez-Gallego M, Garcia-Antón E, Casas-Ruiz M, Blázquez-Pérez D, Teijón O, Cuezva S, Correcher V, Sanchez-Moral S (2013) Leaching of uranyl-silica complexes from the host metapelite rock favoring high radon activity of subsoil air: case of Castañar cave (Spain). J Radioanal Nucl Chem 298(3):1567–1585. doi:10.1007/s10967-013-2587-7

    Article  CAS  Google Scholar 

  • Gascoyne M (1992) Geochemistry of the actinides and their daughters. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to Earth, marine, and environmental sciences. Clarendon Press, Oxford, pp 34–61

    Google Scholar 

  • Gerrard AJ (1988) Rocks and landforms. Ulwin Hymen LTD, London

    Book  Google Scholar 

  • Ghose S, Asaduzzaman K, Zaman N (2012) Radiological significance of marble used for construction of dwellings in Bangladesh. Radioprotection 47(1):105–118. doi:10.1051/radiopro/2011158

    Article  CAS  Google Scholar 

  • Gillespie MR, Styles MT (1999) BGS rock classification scheme: vol 1. Classification of igneous rocks. British Geological Survey Research Report 99-06. British Geological Survey, Nottingham. http://www.bgs.ac.uk/downloads/start.cfm?id=7

  • Goldstein SJ, Stirling CH (2003) Techniques for measuring uranium-series nuclides: 1992–2002. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry, vol 52. Geochemical Society and Mineralogical Society of America, Washington, DC, pp 23–57

  • Gómez DP, Neves L, Pereira A, Neila CG (2011) Natural radioactivity in ornamental stones: an approach to its study using stones from Iberia. Bull Eng Geol Environ 70:543–547. doi:10.1007/s10064-011-0389-0

    Article  Google Scholar 

  • Gupta AS, Rao KS (2001) Weathering indices and their applicability for crystalline rocks. Bull Eng Geol Environ 60:201–221

    Article  CAS  Google Scholar 

  • Hazen RM, Ewing RC, Sverjensky DA (2009) Evolution of uranium and thorium minerals. Am Mineral 94:1293–1311. doi:10.2138/am.2009.3208

    Article  CAS  Google Scholar 

  • Heier KS, Adams JAS (1965) Concentration of radioactive elements in deep crustal material. Geochim Cosmochim Acta 29:53–61

    Article  CAS  Google Scholar 

  • Hem JD (1992) Study and interpretation of the chemical characteristics of natural water, 3rd edn. U.S. Geological Survey Water-Supply Paper 2254

  • IAEA—International Atomic Energy Agency (2003). Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363. International Atomic Energy Agency, Vienna

  • ICRP-60 (1990) Recommendations of the international commission on radiological protection. Annals of the IRCP. Pergamon Press/CRC Taylor & Francis, Oxford/Boca Raton

  • Ivanovich M, Harmon RS (eds) (1992) Uranium-series disequilibrium: applications to earth, marine and environmental sciences. Clarendon Press, Oxford

    Google Scholar 

  • Jones AP, Genge M, Carmody L (2013) Carbonate melts and carbonatites. Rev Mineral Geochem 75(1):289–322. doi:10.2138/rmg.2013.75.10

    Article  CAS  Google Scholar 

  • Jüriado K, Raukas A, Petersell V (2012) Alum shales causing radon risks on the example of Maardu area, north-Estonia. Oil Shale 29(1):76–84. doi:10.3176/oil.2012.1.07

    Article  Google Scholar 

  • Kobranova VN (1986). Petrophysics. Mir Publication, Moscow. English translation Mir Publishers, Moscow, 1989. ISBN: 3-540-51524-0

  • Kovler K, Haquin G, Manasherov V, Ne’Eman E, Lavi N (2002) Natural radionuclides in building materials available in Israel. Build Environ 37(5):531–537. doi:10.1016/S0360-1323(01)00048-8

    Article  Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill, New York. ISBN 007113929X

    Google Scholar 

  • Krishnaswami S (1999) Thorium: element and geochemistry. In: Marshall CP, Fairbridge RW (eds) Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, pp 630–635. ISBN 0-412-75500-9

    Google Scholar 

  • Laznicka P (2010) Giant metallic deposits: future sources of industrial metals. Springer, Berlin. ISBN 978-3-642-12405-1

    Book  Google Scholar 

  • Laznicka P (2014) Giant metallic deposits—a century of progress. Ore Geol Rev 62:259–314. doi:10.1016/j.oregeorev.2014.03.002

    Article  Google Scholar 

  • Lima M, Sanjurjo-Sánchez J, Alves C (2014) Natural gamma radioactivity in granites with different weathering degrees: a case study in Braga (NW Portugal). In: Rogerio-Candelera MA (ed) Science, technology and cultural heritage. CRC Press, London, pp 59–63. ISBN 9781138027442

    Google Scholar 

  • Lima M, Alves C, Sanjurjo-Sánchez J (2015) Procedures for assessment of geologic materials in relation to their contribution to external gamma dose radiation: a review. In: Wythers MC (ed) Advances in materials science research, vol 20. Nova Science Publishers, New York, pp 78–93

    Google Scholar 

  • Lima M, Alves C, Sanjurjo-Sánchez J (2016) Dados de espetrometria gama portátil e tipologia de espaços interiores. II Encontro Galaico-Portugués de Biometría, Santiago de Compostela 2016, pp 338–341

  • Manić V, Nikezic D, Krstic D, Manić G (2014) Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors. Radiat Prot Dosimetry 162:609–617. doi:10.1093/rpd/nct358

    Article  Google Scholar 

  • Markkanen M (1995) Radiation dose assessments for materials with elevated natural radioactivity. STUK-BSTO 32, Finnish Center for Radiation and Nuclear Safety, Helsinki 1995. http://www.stuk.fi/julkaisut/stuk-b/stuk-b-sto32.pdf

  • Marocchi M, Righi S, Maria Bargossi G, Gasparotto G (2011) Natural radionuclides content and radiological hazard of commercial ornamental stones: an integrated radiometric and mineralogical-petrographic study. Radiat Meas 46(5):538–545. doi:10.1016/j.radmeas.2011.03.017

    Article  CAS  Google Scholar 

  • McLennan SM, Murray RW (1999) Geochemistry of sediments. In: Marshall CP, Fairbridge RW (eds) Encyclopedia of geochemistry. Kluwer Academic Publishers, Dordrecht, pp 282–292. ISBN 0-412-75500-9

    Google Scholar 

  • Meunier A, Sardini P, Robinet JC, Prêt D (2007) The petrography of weathering processes: facts and outlooks. Clay Miner 42(4):415–435. doi:10.1180/claymin.2007.042.4.01

    Article  CAS  Google Scholar 

  • Morales Demarco M, Oyhantçabal P, Stein K-J, Siegesmund S (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63(7–8):1879–1909. doi:10.1007/s12665-010-0827-5

    Article  Google Scholar 

  • Moses C, Robinson D, Barlow J (2014) Methods for measuring rock surface weathering and erosion: a critical review. Earth Sci Rev 135:141–161

    Article  Google Scholar 

  • Mothersill CE, Seymour CB (2012) Implications for human and environmental health of low doses of radiation. In: Mothersil CE, Korogodina V, Seymour CB (eds) Radiobiology and environmental security. Springer, Dordrecht, pp 43–51

    Chapter  Google Scholar 

  • Nuccetelli C, Leonardi F, Trevisi R (2015) A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure. J Environ Radioact 143:70–75. doi:10.1016/j.jenvrad.2015.02.011

    Article  CAS  Google Scholar 

  • Olhoeft GR, Johnson GR (1989) Densities of rocks and minerals. In: Carmichael RS (ed) Practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, pp 139–176. ISBN 0-8493-3703-8

    Google Scholar 

  • Ollier C (1984) Weathering, 2nd edn. Longman, London, p 270

    Google Scholar 

  • Osborne JC Jr, Miller JH, Kempner ES (2000) Molecular mass and volume in radiation target theory. Biophys J 78:1698–1702

    Article  CAS  Google Scholar 

  • Osmond JK, Ivanovich M (1992) Uranium-series mobilization and surface hydrology. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to Earth, marine, and environmental sciences. Clarendon Press, Oxford, pp 259–289

    Google Scholar 

  • Papadopoulos A, Christofides G, Koroneos A, Papadopoulou L, Papastefanou C, Stoulos S (2013) Natural radioactivity and radiation index of the major plutonic bodies in Greece. J Environ Radioact 124:227–238. doi:10.1016/j.jenvrad.2013.06.004

    Article  CAS  Google Scholar 

  • Pereira AJSC, Godinho MM, Neves LJPF (2010) On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province. J Environ Radioact 101(10):875–882. doi:10.1016/j.jenvrad.2010.05.014

    Article  CAS  Google Scholar 

  • Pereira D, Neves L, Pereira A, Peinado M, Blanco JA, Tejado JJ (2012) A radiological study of some ornamental stones: the bluish granites from Extremadura (Spain). Nat Hazards Earth Syst Sci 12:395–401. doi:10.5194/nhess-12-395-2012

    Article  Google Scholar 

  • Pöschl M, Nollet LML (eds) (2007) Radionuclide concentrations in food and the environment. Taylor & Francis, Boca Raton

    Google Scholar 

  • Prasad KN (ed) (1995) Handbook of radiobiology. CRC Press, Boca Raton

    Google Scholar 

  • Prasad KN, Cole WC, Hasse GM (2004) Health risks of low dose ionizing radiation in humans: a review. Exp Biol Med 229(5):378–382

    Article  CAS  Google Scholar 

  • Proyecto Marna (2000) Mapa de radiación gamma natural. Colección de Informes Técnicos 5.2000. Consejo de Seguridad Nuclear

  • Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127. doi:10.1016/j.apradiso.2013.12.005

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer, Berlin. ISBN 3-540-63670-6

    Book  Google Scholar 

  • Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings 88:158–170. doi:10.1016/j.jenvrad.2006.01.009

    CAS  Google Scholar 

  • Risica S, Bolzan C, Nuccetelli C (1999) Radioactivity in building materials: experimental methods, calculations and an overview of the Italian situation. Radon in the Living Environment, 19–23 April 1999, Athens, Greece

  • Risica S, Bolzan C, Nuccetelli C (2001) Radioactivity in building materials: room model analysis and experimental methods. Sci Total Environ 272(1–3):119–26. http://www.ncbi.nlm.nih.gov/pubmed/11379899

  • Rizzo S, Brai M, Basile S, Bellia S, Hauser S (2001) Gamma activity and geochemical features of building materials: estimation of gamma dose rate and indoor radon levels in Sicily. Appl Radiat Isot 55(2):259–265. doi:10.1016/S0969-8043(00)00384-5

  • Rogers JJW, Adams JAS (1969) Uranium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, New York. Copublished in the U.S. with J. Wiley & Sons. ISBN: 9780582067011

  • Rosholt J (1982) Mobilization and weathering. In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: Application to environmental problems. Oxford Sciences Publications, Oxford, pp 167–180

    Google Scholar 

  • Saha GB (2006) Physics and radiobiology of nuclear medicine. Springer, New York

    Book  Google Scholar 

  • Siddall R (2014). Luxury lithics: decorative stone on bond street. Urban Geology in London No. 16. http://www.ucl.ac.uk/~ucfbrxs/Homepage/walks/BondStreet.pdf

  • Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69(3):225–240. doi:10.1016/S0265-931X(03)00081-X

    Article  CAS  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders AD, Norry NJ (eds) Magmatism in the ocean basins. Geological Society, London, pp 313–345

    Google Scholar 

  • Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. Rev Min Geochem 38:393–432

    CAS  Google Scholar 

  • Trevisi R, Risica S, Alessandro MD, Paradiso D, Nuccetelli C (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 105:11–20. doi:10.1016/j.jenvrad.2011.10.003

    Article  CAS  Google Scholar 

  • Tubiana M, Dutreix J, Wambersie A, Bewley DK (1990) Introduction to radiobiology. Taylor & Francis, London

    Google Scholar 

  • Tufail M (2012) Radium equivalent activity in the light of UNSCEAR report. Environ Monit Assess 184(9):5663–5667. doi:10.1007/s10661-011-2370-6

    Article  CAS  Google Scholar 

  • Turhan Ş, Atici E, Varinlioʇlu A (2015) Radiometric analysis of volcanic tuff stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection. doi:10.1051/radiopro/2015020

    Google Scholar 

  • Ujić P, Čeliković I, Kandić A, Vukanac I, Đurašević M, Dragosavac D, Žunić ZS (2010) Internal exposure from building materials exhaling 222Rn and 220Rn as compared to external exposure due to their natural radioactivity content. Appl Radiat Isot 68(1):201–206. doi:10.1016/j.apradiso.2009.10.003

    Article  Google Scholar 

  • UNSCEAR (1958) Report of the United Nations Scientific Committee on the effects of atomic radiation. General assembly official records: thirteenth session supplement no. 17 (A/3838). United Nations, New York

  • UNSCEAR (1982) Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the effects of atomic radiation. 1982 Report to the General Assembly, with annexes. United Nations, New York

  • UNSCEAR (1993) Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the effects of atomic radiation UNSCEAR 1993 Report to the General Assembly, with annexes. United Nations, New York

  • UNSCEAR (2000) Ionizing radiation: sources and biological effects. United Nations Scientific Committee on the effects of atomic radiation UNSCEAR 2000 Report to the General Assembly, with annexes, vols I and II. United Nations, New York

  • UNSCEAR (2010) Report of the United Nations Scientific Committee on the effects of atomic radiation 2010. United Nations, New York

    Google Scholar 

  • UNSCEAR (2012) Biological mechanisms of radiation actions at low doses. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR. United Nations, New York

    Google Scholar 

  • UNSCEAR (2013) Report of the United Nations Scientific Committee on the effects of atomic radiation 2013, vols I and II. United Nations, New York

  • Van Schmus WR (1989) Radioactivity properties of minerals and rocks. In: Carmichael RS (ed) Practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, pp 583–596. ISBN 0-8493-3703-8

    Google Scholar 

  • Vosniakos FK (2012) Radioactivity transfer in environment and food. Springer, Berlin. doi:10.1007/978-3-642-28741-1

    Book  Google Scholar 

  • Wedepohl KW (1978) Handbook of geochemistry. Springer, Berlin

    Google Scholar 

  • Wedepohl KH (1995) Ingerson lecture the composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Zeghib S, Aydarous AS, Al-qahtany A (2016) Radiological hazard assessment of raw granites from Ranyah, KSA. J Geosci Environ Prot. doi:10.4236/gep.2016.49003

    Google Scholar 

Download references

Acknowledgments

The Lab2PT—Landscapes, Heritage and Territory laboratory—AUR/04509 is supported by the Portuguese “Fundação para a Ciência e a Tecnologia” (FCT UID/AUR/04509/2013), with Portuguese funds and when applicable of the FEDER co-financing, in the aim of the new partnership agreement PT2020 and COMPETE2020—POCI 01 0145 FEDER 007528. J. Sanjurjo-Sánchez is also grateful for funding from “Consolidación y estructuración de unidades de investigación competitivas—Grupo de potencial de crecimiento” (GPC2015/024), Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Sanjurjo-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjurjo-Sánchez, J., Alves, C. Geologic materials and gamma radiation in the built environment. Environ Chem Lett 15, 561–589 (2017). https://doi.org/10.1007/s10311-017-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0643-1

Keywords

Navigation