Environmental Chemistry Letters

, Volume 14, Issue 4, pp 423–441 | Cite as

Molecular microbiology methods for environmental diagnosis

  • T. Bouchez
  • A. L. Blieux
  • S. Dequiedt
  • I. Domaizon
  • A. Dufresne
  • S. Ferreira
  • J. J. Godon
  • J. Hellal
  • C. Joulian
  • A. Quaiser
  • F. Martin-Laurent
  • A. Mauffret
  • J. M. Monier
  • P. Peyret
  • P. Schmitt-Koplin
  • O. Sibourg
  • E. D’oiron
  • A. Bispo
  • I. Deportes
  • C. Grand
  • P. Cuny
  • P. A. Maron
  • L. Ranjard
Review

Abstract

To reduce the environmental footprint of human activities, the quality of environmental media such as water, soil and the atmosphere should be first assessed. Microorganisms are well suited for a such assessment because they respond fast to environmental changes, they have a huge taxonomic and genetic diversity, and they are actively involved in biogeochemical cycles. Here, we review microbiological methods that provide sensitive and robust indicators for environmental diagnosis. Methods include genomics, transcriptomics, proteomics and metabolomics to study the abundance, diversity, activity and functional potentials of indigenous microbial communities in various environmental matrices such as water, soil, air and waste. We describe the advancement, technical limits and sensitivity of each method. Examples of method application to farming, industrial and urban impact are presented. We rank the most advanced indicators according to their level of operability in the different environmental matrices based on a technology readiness level scale.

Keywords

Molecular microbiology Environmental diagnosis Bioindicator Environmental matrix 

References

  1. Bailly J, Fraissinet-Tachet L, Verner M-C, Debaud J-C, Lemaire M, Wesolowski-Louvel M et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1(7):632–642. doi:10.1038/ismej.2007.68 CrossRefGoogle Scholar
  2. Baker BJ, Sheik CS, Taylor CA, Jain S, Bhasi A, Cavalcoli JD, Dick GJ (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J 7(10):1962–1973. doi:10.1038/ismej.2013.85 CrossRefGoogle Scholar
  3. Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285. doi:10.1016/j.ecolecon.2007.03.004 CrossRefGoogle Scholar
  4. Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5(11):1735–1747. doi:10.1038/ismej.2011.51 CrossRefGoogle Scholar
  5. Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72(9):6288–6298. doi:10.1128/AEM.00246-06 CrossRefGoogle Scholar
  6. Buitenhuis ET, Hashioka T, Le Quéré C (2013) Combined constraints on global ocean primary production using observations and models. Glob Biogeochem Cycles 27:847–858. doi:10.1002/gbc.20074 CrossRefGoogle Scholar
  7. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803. doi:10.1038/ismej.2013.196 CrossRefGoogle Scholar
  8. Delmont TO, Robe P, Clark I, Simonet P, Vogel T (2011) Metagenomic comparison of direct and indirect soil DNA extraction approaches. J Microbiol Methods 86(3):397–400. doi:10.1016/j.mimet.2011.06.013 CrossRefGoogle Scholar
  9. Dequiedt S, Saby NPA, Lelievre M, Jolivet C, Thioulouse J, Toutain B, Arrouays D, Bispo A, Lemanceau P, Ranjard L (2011) Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Glob Ecol Biogeogr 20(4):641–652. doi:10.1111/j.1466-8238.2010.00628.x CrossRefGoogle Scholar
  10. Dugat-Bony E, Peyretaillade E, Parisot N, Biderre-Petit C, Jaziri F, Hill D, Rimour S, Peyret P (2012) Detecting unknown sequences with DNA microarrays: explorative probe design strategies. Environ Microbiol 14(2):356–371. doi:10.1111/j.1462-2920.2011.02559.x CrossRefGoogle Scholar
  11. Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5:757–764. doi:10.1111/1758-2229.12078 Google Scholar
  12. Durban N, Juzan L, Krier J, Gillot S (2016) Control of Microthrix parvicella by aluminium salts addition. Water Sci Technol 73(2):414–422. doi:10.2166/wst.2015.456 CrossRefGoogle Scholar
  13. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161. doi:10.1038/81137 CrossRefGoogle Scholar
  14. Figeys D (2000) The Achilles’ heel of proteomics. Trends Biotechnol 18(12):483. doi:10.1016/S0167-7799(00)01507-9 CrossRefGoogle Scholar
  15. Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151Google Scholar
  16. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105(10):3805–3810. doi:10.1073/pnas.0708897105 CrossRefGoogle Scholar
  17. Geisen S, Tveit A, Clark I, Richter A, Svenning MM, Bonkowski M, Urich T (2015) Metatranscriptomic census of active protists in soils. ISME J 9(10):2178–2190. doi:10.1038/ismej.2015.30 CrossRefGoogle Scholar
  18. Ghai R, Mizunon CM, Picazo A, Camacho A, Rodriguez-Valera F (2014) Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol Ecol 23(24):6073–6090. doi:10.1111/mec.12985 CrossRefGoogle Scholar
  19. Gifford SM, Sharma S, Moran MA (2014) Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Front Microbiol 5:185. doi:10.3389/fmicb.2014.00185 CrossRefGoogle Scholar
  20. Gilbert J, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8):e3042. doi:10.1371/journal.pone.0003042 CrossRefGoogle Scholar
  21. Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr Soil 54(1):33–45. doi:10.1111/j.1747-0765.2007.00195.x CrossRefGoogle Scholar
  22. Horrigue W, Dequiedt S, Chemidlin Prévost-Bouré N, Jolivet C, Saby N, Arrouays D, Bispo A, Maron PA, Ranjard L (2016) Predictive model of soil molecular microbial biomass. Ecol Indic 64:203–211. doi:10.1016/j.ecolind.2015.12.004 CrossRefGoogle Scholar
  23. Joux F, Bertrand JC, De Wit R, Grossi V, Intertaglia L, Lebaron P, Michotey V, Normand P, Peyret P, Raimbault P, Tamburini C, Urios L (2011) Les biopuces en écologie microbienne. Méthodes d’études des micro-organismes dans l’environnement. Chapitre 17. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P (eds) Ecologie Microbienne. Microbiologie des milieux naturels et anthropisés. Presses Universitaires de Pau et des Pays de l’Adour, Pau, pp 799–876Google Scholar
  24. Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, Zechmeister-Boltenstern S (2012) Soil metaproteomics—comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24. doi:10.1016/j.soilbio.2012.05.014 CrossRefGoogle Scholar
  25. Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ Rev 21(13):180–205. doi:10.1139/er-2013-0011 CrossRefGoogle Scholar
  26. Leary DH, Hervey WJ IV, Deschamps JR, Kusterbeck AW, Vora GJ (2013) Which metaproteome? The impact of protein extraction bias on metaproteomic analyses. Mol Cell Probes 27(5–6):193–199. doi:10.1016/j.mcp.2013.06.003 CrossRefGoogle Scholar
  27. Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6(12):2257–2268. doi:10.1038/ismej.2012.63 CrossRefGoogle Scholar
  28. London RE, Houck DR (2004) Introduction to metabolomics and metabolic profiling. In: Hamadeh HK, Afshari CA (eds) Toxicogenomics: principles and applications. Wiley, New York, pp 299–340Google Scholar
  29. Lucio M (2009) Datamining metabolomics: the convergence point of non-target approach and statistical investigation. Thesis, Technical university of Munchen, 189p. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20080916-673608-1-4
  30. Mao Y, Xia Y, Wang Z, Zhang T (2014) Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Appl Microbiol Biotechnol 98(15):6885–6895. doi:10.1007/s00253-014-5756-x CrossRefGoogle Scholar
  31. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microbial Ecol 53(3):486–493. doi:10.1007/s00248-006-9196-8 CrossRefGoogle Scholar
  32. Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: spatial overview, driving factors and functional interest. CRAS Biol II 334(5–6):403–411. doi:10.1016/j.crvi.2010.12.003 Google Scholar
  33. McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci 107(38):16420–16427. doi:10.1073/pnas.1010732107 CrossRefGoogle Scholar
  34. Militon C, Atkinson A, Michotey V, Jeziorski C, Cravo-Laureau C, Durand R, Bonin P, Cuny P (2016) Metatranscriptomes of marine coastal sediment affected by oil addition and/or by the bioturbating activity of the marine polychaete Hediste diversicolor: who are the microbial players? Mar Genom. doi:10.1016/j.margen.2016.06.006 Google Scholar
  35. Mondav R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212. doi:10.1038/ncomms4212 CrossRefGoogle Scholar
  36. Mushtag MY, Choi YH, Verpoorte R, Wilson EG (2013) Extraction for metabolomics: access to the metabolome. Phytochem Anal 25(4):291–306. doi:10.1002/pca.2505 CrossRefGoogle Scholar
  37. Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2010) Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J 4(8):1002–1019. doi:10.1038/ismej.2010.28 CrossRefGoogle Scholar
  38. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189. doi:10.1080/004982599238047 CrossRefGoogle Scholar
  39. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosaf Res 6(1–2):37–53. doi:10.1051/ebr:2007031 CrossRefGoogle Scholar
  40. Ottesen E, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, DeLonga EF (2013) Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA 110(6):E488–E497. doi:10.1073/pnas.1222099110 CrossRefGoogle Scholar
  41. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R et al (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190(7):2572–2579. doi:10.1128/JB.01248-07 CrossRefGoogle Scholar
  42. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71(7):4121–4126. doi:10.1128/AEM.71.7.4121-4126.2005 CrossRefGoogle Scholar
  43. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11(6):1358–1375. doi:10.1111/j.1462-2920.2008.01863.x CrossRefGoogle Scholar
  44. Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Pérès G, Rutgers M (2012) Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. Curr Opin Environ Sustain 4(5):529–538. doi:10.1016/j.cosust.2012.10.009 CrossRefGoogle Scholar
  45. Quaiser A, Bodi X, Dufresne A, Naquin D, Francez AJ, Dheilly A, Coudouel S, Pédrot M, Vandenkoornhuyse P (2014) Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. PLoS One 9(7):e102561. doi:10.1371/journal.pone.0102561 CrossRefGoogle Scholar
  46. Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6(9):693–699. doi:10.1038/nrmicro1935 CrossRefGoogle Scholar
  47. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305(5680):86–90. doi:10.1126/science.1097639 CrossRefGoogle Scholar
  48. Rames EK, Smith MK, Hamill SD, De Faveri J (2013) Microbial indictors related to yield and disease and changes in soil microbial community structure with ginger farm management practices. Aust Plant Pathol 42(6):685–692. doi:10.1007/s13313-013-0231-1 CrossRefGoogle Scholar
  49. Ritz K, Black HIJ, Campbell CD, Harris JA, Wood C (2009) Selecting indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol Ind 9(6):1212–1221. doi:10.1016/j.ecolind.2009.02.009 CrossRefGoogle Scholar
  50. Savichtcheva O, Debroas D, Perga ME, Arnaud F, Lyautey E, Kirkham A, Chardon C, Alric B, Domaizon I (2014) Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshw Biol 60:31–49CrossRefGoogle Scholar
  51. Sharma SK, Ramesh A, Sharma MP, OmJoshi OP, Govaerts B, Steenwerth KL, Karlen DL (2011) Microbial community structure and diversity as indicators for evaluating soil quality. In: Lichtfouse E (ed) Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Berlin, pp 317–358. doi:10.1007/978-90-481-9513-8_11 Google Scholar
  52. Terrat S, Plassart P, Bourgeois E, Ferreira S, Dequiedt S, Adele-Dit-De-Renseville A, Lemanceau P, Bispo A, Chabbi A, Maron PA, Ranjard L (2015) Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microbial Biotechnol 8(1):131–142. doi:10.1111/1751-7915.12162 CrossRefGoogle Scholar
  53. Tseng CH, Tang SL (2014) Marine microbial metagenomics: from individual to the environment. Int J Mol Sci 15(5):8878–8892. doi:10.3390/ijms15058878 CrossRefGoogle Scholar
  54. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7(12):2248–2258. doi:10.1038/ismej.2013.119 CrossRefGoogle Scholar
  55. Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7(2):299–311. doi:10.1038/ismej.2012.99 CrossRefGoogle Scholar
  56. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3(6):e2527. doi:10.1371/journal.pone.0002527 CrossRefGoogle Scholar
  57. Vila-Costa M, Sharma S, Moran MA, Casamayor EO (2013) Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ Microbiol 15(4):1190–1203. doi:10.1111/1462-2920.12033 CrossRefGoogle Scholar
  58. Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14(2):92–97. doi:10.1016/j.tim.2005.12.006 CrossRefGoogle Scholar
  59. Yates JR 3rd, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214(2):397–408. doi:10.1006/abio.1993.1514 CrossRefGoogle Scholar
  60. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288-14. doi:10.1128/mBio.02288-14 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • T. Bouchez
    • 1
  • A. L. Blieux
    • 2
  • S. Dequiedt
    • 3
  • I. Domaizon
    • 4
  • A. Dufresne
    • 5
  • S. Ferreira
    • 6
  • J. J. Godon
    • 7
  • J. Hellal
    • 8
  • C. Joulian
    • 8
  • A. Quaiser
    • 5
  • F. Martin-Laurent
    • 3
  • A. Mauffret
    • 8
  • J. M. Monier
    • 9
  • P. Peyret
    • 10
  • P. Schmitt-Koplin
    • 11
  • O. Sibourg
    • 9
  • E. D’oiron
    • 12
  • A. Bispo
    • 13
  • I. Deportes
    • 13
  • C. Grand
    • 13
  • P. Cuny
    • 14
  • P. A. Maron
    • 3
  • L. Ranjard
    • 3
  1. 1.Irstea, UR HBANAntony CedexFrance
  2. 2.Welience AgroEnvironnement-SATT Grand-EstAgrOnov – RD31BretenièreFrance
  3. 3.Agroécologie, AgroSup Dijon, INRAUniversity of Bourgogne Franche-ComtéDijonFrance
  4. 4.INRA UMR CARRTELThononFrance
  5. 5.UMR CNRSUniversité Rennes, ECOBIORennesFrance
  6. 6.GenoscreenLilleFrance
  7. 7.LBE, INRANarbonneFrance
  8. 8.Bureau des Ressources Géologiques et MinièresOrléans Cedex 1France
  9. 9.ENOVEOLyonFrance
  10. 10.Université d’AuvergneClermont-FdFrance
  11. 11.Helmholtz Zentrum MuenchenNeuherbergGermany
  12. 12.Observatoire Français des Sols VivantsSt Martin du BoisFrance
  13. 13.ADEMEAngers Cedex 01France
  14. 14.Université Aix- Marseille, Institut PhytéasOCEAMEDMarseilleFrance

Personalised recommendations