Skip to main content
Log in

Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

There is actually a need for efficient methods to clean waters and wastewaters from pollutants such as the bisphenol A endocrine disrupter. Advanced oxidation processes currently use persulfate or peroxymonosulfate to generate sulfate radicals. There are, however, few reports on the use of sulfite to generate sulfate radicals, instead of persulfate or peroxymonosulfate, except for dyes. Here we studied the degradation of the bisphenol A using iron(III) as catalyst and sulfite as precursor of oxysulfur radicals, at initial pH of 6, under UV irradiation at 395 nm. The occurrence of radicals was checked by quenching with tert-butyl alcohol and ethanol. Bisphenol A degradation products were analyzed by liquid chromatography coupled with mass spectrometry (LC–MS). Results reveal that iron(III) or iron(II) have a similar oxidation efficiency. Quenching experiments show that the oxidation rate of bisphenol A is 47.7 % for SO ·−4 , 37.3 % for SO ·−5 and 15 % for HO·. Bisphenol A degradation products include catechol and quinone derivatives. Overall, our findings show that the photo-iron(III)–sulfite system is efficient for the oxidation of bisphenol A at circumneutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712. doi:10.1021/es035121o

    Article  CAS  Google Scholar 

  • Brandt C, Fabian I, van Eldik R (1999) Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution: evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorg Chem 33:687–701. doi:10.1021/ic00082a012

    Article  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution. J Phys Chem Ref Data 17:513–886. doi:10.1063/1.555805

    Article  CAS  Google Scholar 

  • Chen L, Peng X, Liu J, Li J, Wu F (2012) Decolorization of orange II in aqueous solution by an Fe(II)/sulfite system: replacement of persulfate. Ind Eng Chem Res 51:13632–13638. doi:10.1021/ie3020389

  • Das NT, Huie ER, Neta P (1999) Reduction potentials of SO3 , SO5 and S4O6 3− radicals in aqueous solution. J Phys Chem A 103:3581–3588. doi:10.1021/jp9900234

    Article  CAS  Google Scholar 

  • Hammedi T, Triki M, Alvarez MG, Chimentao RJ, Ksibi Z, Ghorbel A, Llorca J, Medina F (2015) Total degradation of p-hydroxybenzoic acid by Ru-catalysed wet air oxidation: a model for wastewater treatment. Environ Chem Lett 13:481–486. doi:10.1007/s10311-015-0529-z

    Article  CAS  Google Scholar 

  • Hayon E, Treinin A, Wilf J (1972) Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite–bisulfite–pyrosulfite systems. J Am Chem Soc 94:47–57. doi:10.1021/ja00756a009

    Article  CAS  Google Scholar 

  • Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47:1952–1959. doi:10.1021/es304502y

    Article  CAS  Google Scholar 

  • Jiang X, Wu Y, Wang P, Li H, Dong W (2013) Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion. Environ Sci Pollut Res 20:4947–4953. doi:10.1007/s11356-013-1468-5

    Article  CAS  Google Scholar 

  • Lee HJ, Kim HH, Lee H, Lee C (2015) Reaction of aqueous iodide at high concentration with O3 and O3/H2O2 in the presence of natural organic matter: implications for drinking water treatment. Environ Chem Lett 13:453–458. doi:10.1007/s10311-015-0519-1

    Article  CAS  Google Scholar 

  • Liang C, Su HW (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562. doi:10.1021/ie9002848

    Article  CAS  Google Scholar 

  • McLachlan GA, Muller JG, Rokita SE, Burrows CJ (1996) Metal-mediated oxidation of guanines in DNA and RNA: a comparison of cobalt(II), nickel(II) and copper(II) complexes. Inorg Chim Acta 251:193–199. doi:10.1016/s0020-1693(96)05272-3

    Article  CAS  Google Scholar 

  • Minero C, Maurino V, Pelizzetti E, Vione D (2006) An empirical, quantitative approach to predict the reactivity of some substituted aromatic compounds towards reactive radical species (Cl −·2 , Br −·2 , ·NO2, SO −·3 , SO −·4 ) in aqueous solution. Environ Sci Pollut Res 13:212–214. doi:10.1065/espr2006.06.318

    Article  CAS  Google Scholar 

  • Neta P, Huie RE (1985) One-electron redox reactions involving sulfite ions and aromatic amines. J Phys Chem 89:1783–1787. doi:10.1021/j100255a049

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284. doi:10.1063/1.555808

    Article  CAS  Google Scholar 

  • Rodriguez EM, Fernandez G, Klamerth N, Maldonado MI, Alvarez PM, Malato S (2010) Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl Catal B Environ 95:228–237. doi:10.1016/j.apcatb.2009.12.027

    Article  CAS  Google Scholar 

  • Sajiki J, Yonekubo J (2003) Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere 51:55–62. doi:10.1016/s0045-6535(02)00789-0

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Shukla S, Oturan MA (2015) Dye removal using electrochemistry and semiconductor oxide nanotubes. Environ Chem Lett 13:157–172. doi:10.1007/s10311-015-0501-y

    Article  CAS  Google Scholar 

  • Wine PH, Tang Y, Thorn RP, Wells JR, Davis DD (1989) Kinetics of aqueous phase reactions of the SO −·4 radical with potential importance in cloud chemistry. J Geophys Res 94:1085–1094. doi:10.1029/jd094id01p01085

    Article  CAS  Google Scholar 

  • Yates BJ, Darlington R, Zboril R, Sharma VK (2014) High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. Environ Chem Lett 12:413–417. doi:10.1007/s10311-014-0463-5

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Muir D (2000) Iron(II) oxidation by SO2/O2 in acidic media: Part I. Kinetics and mechanism. Hydrometallurgy 55:229–245. doi:10.1016/s0304-386x(99)00082-1

    Article  CAS  Google Scholar 

  • Zhang L, Chen L, Xiao M, Zhang L, Wu F, Ge L (2013) Enhanced decolorization of orange II solutions by the Fe(II)–sulfite system under xenon lamp irradiation. Ind Eng Chem Res 52:10089–10094. doi:10.1021/ie400469u

  • Zhou D, Wu F, Deng N, Xiang W (2004) Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts. Water Res 38:4107–4116. doi:10.1016/j.watres.2004.07.021

    Article  CAS  Google Scholar 

  • Zhou D, Chen L, Zhang C, Yu Y, Zhang L, Wu F (2014a) A novel photochemical system of ferrous sulfite complex: kinetics and mechanisms of rapid decolorization of acid orange 7 in aqueous solutions. Water Res 57:87–95. doi:10.1016/j.watres.2014.03.016

    Article  CAS  Google Scholar 

  • Zhou D, Zhang H, Chen L (2014b) Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? J Chem Technol Biotechnol 90:775–779. doi:10.1002/jctb.4525

    Article  Google Scholar 

  • Zhou D, Yuan Y, Yang S, Gao H, Chen L (2015) Roles of oxysulfur radicals in the oxidation of acid orange 7 in the Fe(III)–sulfite system. J Sulfur Chem 36:373–384. doi:10.1080/17415993.2015.1028939

    Article  CAS  Google Scholar 

  • Zhu Z, Zuo Y (2013) Bisphenol A and other alkylphenols in the environment—occurrence, fate, health effects and analytical techniques. Adv Environ Res 2:179–202. doi:10.12989/aer.2013.2.3.179

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 21477090). Comments from anonymous reviewers are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Wu or Gilles Mailhot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Li, S., Peng, X. et al. Efficient oxidation of bisphenol A with oxysulfur radicals generated by iron-catalyzed autoxidation of sulfite at circumneutral pH under UV irradiation. Environ Chem Lett 14, 527–532 (2016). https://doi.org/10.1007/s10311-016-0573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0573-3

Keywords

Navigation