Environmental Chemistry Letters

, Volume 14, Issue 3, pp 345–351 | Cite as

Essential oil components decrease pulmonary and hepatic cells inflammation induced by air pollution particulate matter

  • Miriana Kfoury
  • Mireille Borgie
  • Anthony Verdin
  • Frédéric Ledoux
  • Dominique Courcot
  • Lizette Auezova
  • Sophie Fourmentin
Original Paper

Abstract

Outdoor air pollution and fine particulate matter (PM) were recently classified as carcinogenic to humans by the International Agency for Research on Cancer. The exposure to airborne particulate matter also contributes to cardiovascular and respiratory diseases, which are major public health concerns. Up to now, no work has evaluated the ability of essential oils as an alternative medicine to relieve the adverse health effects caused by airborne particulate matter. Here, we investigated for the first time the effects of four essential oil components, trans-anethole, estragole, eugenol and isoeugenol, on the reduction in inflammation induced by particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5), in human bronchial epithelial (BEAS-2B) and human liver carcinoma (HepG2) cell lines. Anethole is a flavor component of anise and fennel, estragole is occurring in basil, eugenol occurs in clove bud oil and isoeugenol occurs in ylang-ylang. Essential oil components were tested either as free or hydroxypropyl-β-cyclodextrin-encapsulated forms. Control experiments showed that particulate matter (PM2.5) induced inflammation by secretion of pro-inflammatory cytokines IL-6 and IL-8. Our results show that the addition of either free or encapsulated essential oil components to particulate matter exposed cells decreased up to 96 % the cytokine IL-6 level, and by up to 87 % the cytokine IL-8 level. Overall our findings evidence for the first time that natural essential oil components counteract the inflammatory effects of particulate matter and that encapsulation in cyclodextrins preserved their properties.

Keywords

Air pollution Anti-inflammatory Essential oils Hydroxypropyl-β-cyclodextrin Inclusion complex 

References

  1. Aicart E, Junquera E (2003) Fluorescence spectroscopy study complex formation between purine derivatives and cyclodextrins: a fluorescence spectroscopy study. J Incl Phenom Macrocycl Chem 47:161–165. doi:10.1023/B:JIPH.0000011786.89533.0e CrossRefGoogle Scholar
  2. Borgie M, Ledoux F, Verdin A, Cazier F, Greige H, Shirali P, Courcot D, Dagher Z (2015) Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ Res 136:352–362. doi:10.1016/j.envres.2014.10.010 CrossRefGoogle Scholar
  3. Boulmedarat L, Bochot A, Lesieur S, Fattal E (2005) Evaluation of buccal methyl-β-cyclodextrin toxicity on human oral epithelial cell culture model. J Pharm Sci 94(6):1300–1309. doi:10.1002/jps.20350 CrossRefGoogle Scholar
  4. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666. doi:10.1016/j.addr.2007.05.012 CrossRefGoogle Scholar
  5. Chen CC, Yan SH, Yen MY, Wu PF, Liao WT, Huang TS, Wen ZH, Wang HMD (2016) Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. J Microbiol Immunol Infect 49:104–111. doi:10.1016/j.jmii.2013.12.009 CrossRefGoogle Scholar
  6. Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53(1):110–114. doi:10.1016/j.foodres.2013.03.048 CrossRefGoogle Scholar
  7. Da Silveira E, Sa RDC, Andrade LN, De Oliveira RDRB, De Sousa DP (2014) A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 19(2):1459–1480. doi:10.3390/molecules19021459 CrossRefGoogle Scholar
  8. Dergham M, Lepers C, Verdin A, Billet S, Cazier F, Courcot D, Shirali P, Garcon G (2012) Prooxidant and proinflammatory potency of air pollution particulate matter (PM2.5–0.3) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B). Chem Res Toxicol 25(4):904–919. doi:10.1021/tx200529v CrossRefGoogle Scholar
  9. Dergham M, Lepers C, Verdin A, Cazier F, Billet S, Courcot D, Shirali P, Garçon G (2015) Temporal-spatial variations of the physicochemical characteristics of air pollution particulate matter (PM2.5–0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B). Environ Res 137:256–267. doi:10.1016/j.envres.2014.12.015 CrossRefGoogle Scholar
  10. Dieme D, Cabral-Ndior M, Garcon G, Verdin A, Billet S, Cazier F, Courcot D, Diouf A, Shirali P (2012) Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal). Environ Res 113:1–13. doi:10.1016/j.envres.2011.11.009 CrossRefGoogle Scholar
  11. Ji KL, Gan XQ, Xu YK, Li XF, Guo J, Dahab MM, Zhang P (2016) Protective effect of the essential oil of Zanthoxylum myriacanthum var. pubescens against dextran sulfate sodium-induced intestinal inflammation in mice. Phytomedicine 23:883–890. doi:10.1016/j.phymed.2016.05.006 CrossRefGoogle Scholar
  12. Kfoury M, Landy D, Auezova L, Greige-Gerges H, Fourmentin S (2014) Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein J Org Chem 10:2322–2331. doi:10.3762/bjoc.10.241 CrossRefGoogle Scholar
  13. Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2015a) Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym 131:264–272. doi:10.1016/j.carbpol.2015.06.014 CrossRefGoogle Scholar
  14. Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015b) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164. doi:10.1016/j.carbpol.2014.10.073 CrossRefGoogle Scholar
  15. Kim KH, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143. doi:10.1016/j.envint.2014.10.005 CrossRefGoogle Scholar
  16. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180. doi:10.1016/j.ijpharm.2012.06.055 CrossRefGoogle Scholar
  17. Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 101(9):3019–3032. doi:10.1002/jps.23077 CrossRefGoogle Scholar
  18. Longhin E, Holme J, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10:63. doi:10.1186/1743-8977-10-63 CrossRefGoogle Scholar
  19. Miguel MG (2010) Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15(12):9252–9287. doi:10.3390/molecules15129252 CrossRefGoogle Scholar
  20. Russo A, Formisano C, Rigano D, Cardile V, Arnoldd NA, Senatore F (2016) Comparative phytochemical profile and antiproliferative activity on human melanoma cells of essential oils of three Lebanese Salvia species. Ind Crops Prod 83:492–499. doi:10.1016/j.indcrop.2015.12.080 CrossRefGoogle Scholar
  21. Zabka M, Pavela R (2013) Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 93(6):1051–1056. doi:10.1016/j.chemosphere.2013.05.076 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417ULCODunkirkFrance
  2. 2.Bioactive Molecules Research Group, Faculty of SciencesLebanese UniversityFanarLebanon

Personalised recommendations