Environmental Chemistry Letters

, Volume 14, Issue 3, pp 381–386

Higher Cd adsorption on biogenic elemental selenium nanoparticles

  • Rohan Jain
  • Domician Dominic
  • Norbert Jordan
  • Eldon R. Rene
  • Stephan Weiss
  • Eric D. van Hullebusch
  • René Hübner
  • Piet N. L. Lens
Original Paper

Abstract

Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from −32.7 to −11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L−1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g−1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g−1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.

Keywords

Cd Selenium nanoparticles Intraparticle diffusion Pseudo-second order ζ-Potential Adsorption isotherm 

References

  1. Benaïssa H, Elouchdi MA (2011) Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mater 194:69–78CrossRefGoogle Scholar
  2. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69:2836–2848CrossRefGoogle Scholar
  3. Cao C, Qu J, Wei F et al (2012) Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. Appl Mater Interfaces 4:4283–4287CrossRefGoogle Scholar
  4. Dada A, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45CrossRefGoogle Scholar
  5. El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA et al (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  6. El-Ramady HR, Abdalla N, Alshaal T et al (2015) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13:359–380CrossRefGoogle Scholar
  7. Feng Y, Gong J-L, Zeng G-M et al (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162:487–494CrossRefGoogle Scholar
  8. Findon A, McKay G, Blair HS (1993) Transport studies for the sorption of copper ions by chitosan. J Environ Sci Heal A 28:173–185Google Scholar
  9. Furusawa T, Smith JM (1973) Fluid-particle and intraparticle mass transport rates in slurries. Ind Eng Chem Fundam 12:197–203CrossRefGoogle Scholar
  10. Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394CrossRefGoogle Scholar
  11. Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228CrossRefGoogle Scholar
  12. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689CrossRefGoogle Scholar
  13. Hua M, Zhang S, Pan B et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRefGoogle Scholar
  14. Jain R, Jordan N, Schild D et al (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863CrossRefGoogle Scholar
  15. Jain R, Jordan N, Weiss S et al (2015b) Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol 49:1713–1720CrossRefGoogle Scholar
  16. Jain R, Dominic D, Jordan N et al (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925CrossRefGoogle Scholar
  17. Johnson NC, Manchester S, Sarin L et al (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42:5772–5778CrossRefGoogle Scholar
  18. Lenz M, Smit M, Binder P et al (2008) Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual 37:1691–1700CrossRefGoogle Scholar
  19. Machida M, Fotoohi B, Amamo Y et al (2012) Cadmium (II) adsorption using functional mesoporous silica and activated carbon. J Hazard Mater 221–222:220–227CrossRefGoogle Scholar
  20. Mckay G, Poots VJP (1980) Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent. J Chem Technol Biotechnol 30:279–292CrossRefGoogle Scholar
  21. Meng YT, Zheng YM, Zhang LM, He JZ (2009) Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ Pollut 157:2577–2583CrossRefGoogle Scholar
  22. Sen Gupta S, Bhattacharyya KG (2008) Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manag 87:46–58CrossRefGoogle Scholar
  23. Sharma VK, McDonald TJ, Sohn M et al (2014) Biogeochemistry of selenium. A review. Environ Chem Lett 13:49–58CrossRefGoogle Scholar
  24. Sheela T, Nayaka YA, Viswanatha R et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170CrossRefGoogle Scholar
  25. Staicu LC, van Hullebusch ED, Lens PNL (2015) Production, recovery and reuse of biogenic elemental selenium. Environ Chem Lett 13:89–96CrossRefGoogle Scholar
  26. Tirtom VN, Dinçer A, Becerik S et al (2012) Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem Eng J 197:379–386CrossRefGoogle Scholar
  27. Weber WJ, Morris JC (1962) Removal of biologically resistant pollutants from waste waters by adsorption. Adv Water Pollut Res 2:231–266Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rohan Jain
    • 1
    • 2
  • Domician Dominic
    • 1
  • Norbert Jordan
    • 3
  • Eldon R. Rene
    • 1
  • Stephan Weiss
    • 3
  • Eric D. van Hullebusch
    • 4
  • René Hübner
    • 5
  • Piet N. L. Lens
    • 1
    • 2
  1. 1.UNESCO-IHE, Institute for Water EducationDelftThe Netherlands
  2. 2.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland
  3. 3.Helmholtz-Zentrum Dresden-RossendorfInstitute of Resource EcologyDresdenGermany
  4. 4.Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508)UPEMMarne-la-ValléeFrance
  5. 5.Helmholtz-Zentrum Dresden-RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations