Skip to main content
Log in

Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In India more than 60 % of the population relies on crops for their livelihood. However, crop diseases are one of the major factors limiting productivity. Hence, nanotechnology appears as a new means to control diseases and enhance yield. Here, stable copper nanoparticles were synthesized using cetyl trimethyl ammonium bromide and copper nitrate at room temperature, then characterized by UV–Visible spectrophotometry, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and zeta potential measurement. The antifungal activity was evaluated against three common crop pathogenic Fusarium spp. We found that stable copper nanoparticles synthesized using 0.030 M cetyl trimethyl ammonium bromide and 0.003 M copper nitrate have the maximum activity against Fusarium equiseti with a 25 mm zone of inhibition, followed by F. oxysporum (20 mm) and F. culmorum (19 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bahadory M (2008) Synthesis of noble metal nanoparticles. Ph. D thesis, pp 86–153

  • Booth C, Waterson JM (1964) Fusarium culmorum. CMI descriptions of pathogenic Fungi and Bacteria No. 26. Commonwealth Agricultural Bureaux. 2

  • Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles in Europe. J Plant Pathol 80(29):85–103

    CAS  Google Scholar 

  • Clear RM, Patrick SK (2000) Fusarium head blight pathogens isolated from Fusarium damaged kernels of wheat in western Canada, 1993 to 1998. Can J Plant Pathol 22:51–60

    Article  Google Scholar 

  • CLSI (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard. CLSI document M38-A. CLSI, Pennsylvania. ISBN 1-56238-470-8

  • Gittard SD, Hojo D, Hyde GK, Scarel G, Narayan RJ, Parsons GN (2010) Antifungal textiles formed using silver deposition in supercritical carbon dioxide. J Mater Eng Perform 19:368–373

    Article  CAS  Google Scholar 

  • Hobbelen PH, Paveley ND, Van Den Bosch F (2014) The emergence of resistance to fungicides. PLoS One 9(3):e91910

    Article  Google Scholar 

  • Hu X, Yuan X, Dong L (2014) Coal fly ash and straw immobilize Cu, Cd and Zn from mining waste land. Environ Chem Lett 12:289–295. doi:10.1007/s10311-013-0441-3

    Article  CAS  Google Scholar 

  • Jang KD, Ortega A, Ucol J, Du H, Kim NS (2012) Effect of lithium ions on copper nanoparticle size, shape, and distribution. J Nanotechnol 2012:1–6. doi:10.1155/2012/469834

    Article  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A et al (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Kasiri MB, Safapour S (2014) Natural dyes and antimicrobials for green treatment of textiles. Environ Chem Lett 12:1–13. doi:10.1007/s10311-013-0426-2

    Article  CAS  Google Scholar 

  • Lee H, Park SH, Seo S-G, Kim S-J, Kim S-C, Park Y-K, Jung S-C (2014) Preparation and characterization of copper nanoparticles via the liquid phase plasma method. Curr Nanosci 10:7–10

    Article  CAS  Google Scholar 

  • Magdassi S, Grouchko M, Kamyshny A (2010) Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials 3:4626–4638. doi:10.3390/ma3094626

    Article  CAS  Google Scholar 

  • Mahamadi C, Zambara P (2013) High Cu removal from water using water hyacinth fixed on alginate. Environ Chem Lett 11:377–383. doi:10.1007/s10311-013-0418-2

    Article  CAS  Google Scholar 

  • Mesterhazy A, Bartók T, Kászonyi G, Varga M, Tóth B, Varga J (2005) Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur J Plant Pathol 112:267–281

    Article  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Prom LK, Horsley RD, Steffenson BJ, Schwarz PB (1999) Development of Fusarium head blight and accumulation of deoxynivalenol in barley sampled at different growth stages. J Am Soc Brew Chem 57(2):60–63

    CAS  Google Scholar 

  • Raabe RD, Conners IL, Martinez AP (1981) Checklist of plant diseases in Hawaii: including records of microorganisms, principally fungi, found in the states. Hawaii Institute of Tropical Agriculture and Human Resources (CTAHR), information text series 022

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Shah AT, Ahmad S, Kashif M, Khan MF, Shahzad K, Tabassum S, Mujahid A (2014) In situ synthesis of copper nanoparticles on SBA-16 silica spheres. Arab J Chem. doi:10.1016/j.arabjc.2014.02.013

    Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254. doi:10.1007/s10311-013-0407-5

    Article  CAS  Google Scholar 

  • Warzecha T, Lundh D, Mandal A (2011) Effect of Fusarium culmorum infection on survivability of a T-DNA tagged mutant of Arabidopsis thaliana harboring a mutation in the peptide transporter gene At5g46050. J Biotechnol Comput Biol Bionanotechnol 92(1):77–84

    CAS  Google Scholar 

  • Zhang X, Cui Z (2009) Synthesis of Cu nanowires via solventhermal reduction in reverse microemulsion system. J Phys Confer Ser 152:012022. doi:10.1088/1742-6596/152/1/012022

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants commission, New Delhi for financial support under UGC-SAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bramhanwade, K., Shende, S., Bonde, S. et al. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14, 229–235 (2016). https://doi.org/10.1007/s10311-015-0543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0543-1

Keywords

Navigation